A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM

L. ZEDAM

Abstract. In this paper, a fuzzy version of the analytic form of Hahn-Banach extension theorem is given. As application, the Hahn-Banach theorem for r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces is obtained.

1. Introduction

Hahn-Banach theorem is one of the most famous and useful result in functional analysis. Ramakrishnan [15] established the norm-preserving fuzzy completion of a fuzzy normed algebra and gave a fuzzy extension of Hahn-Banach theorem. In the same year Rhie and Hwang [16] investigated the relation between fuzzy seminorms and crisp seminorms on a linear space X and extended the analytic form of the Hahn-Banach theorem with the notion of fuzzy seminorm. In recent years, a fuzzy version of Hahn-Banach theorem on a vector space over the set of fuzzy real numbers and some related applications were proved by Binimol and Sunny Kuriakose [6, 7]. There are also many other fuzzy versions of Hahn-Banach theorem for fuzzy bounded linear operators on fuzzy normed spaces (see e.g. [2, 9, 12, 19] etc...).

In this paper, using the definition of fuzzy order due to L. A. Zadeh (see [21]), we assume that the set of real numbers \mathbb{R} endowed with a fuzzy order r instead of the natural order \leq and prove a new fuzzy version of the analytic form of Hahn-Banach theorem. As application, the Hahn-Banach theorem for r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces is obtained.

2. Preliminaries

We begin with a number of definitions related to fuzzy orders. We follow the notation and vocabulary of Zadeh [21] closely, and refer the reader to Amroune and Davvaz [1], Beg [3], Bernadette [4], Billot [5], Bodenhofer and et.al. [8], Kundu [10], Li and Yen [11], Ovchinnikov [13, 14], Stuti and Zedam [17], Venugopalan [18], Zadeh [21] and Zimmermann [22] for elementary definitions and facts about fuzzy order relations.

The concept of a fuzzy set in a non-empty set was introduced by Zadeh [20] in 1965.

Received: December 2010; Accepted: September 2012
Key words and phrases: Fuzzy order, r-fuzzy bounded linear functional, r-fuzzy norm, r-fuzzy Hahn-Banach theorem.
Let X be a nonempty set, a fuzzy subset A of X is characterized by its membership function $A : X \to [0, 1]$ and $A(x)$ is interpreted as the degree of membership of the element x in the fuzzy subset A for each $x \in X$.

In [21], Zadeh gave the following definition of fuzzy order.

Definition 2.1. [21] Let X be a nonempty set. A Zadeh’s binary fuzzy partial order (briefly, fuzzy order) on X is a fuzzy subset r on $X \times X$ in which the following conditions are satisfied:

(i) for all $x \in X$, $r(x, x) = 1$, (fuzzy reflexivity);

(ii) for all $x, y \in X$, $(r(x, y) > 0$ and $x \neq y)$ implies $(r(y, x) = 0)$, (fuzzy antisymmetry);

(iii) for all $x, y, z \in X$, $r(x, z) \geq \max_{y \in X} \min \{r(x, y), r(y, z)\}$, (fuzzy transitivity).

Note that each crisp order \leq on X can be considered a fuzzy order defined by $r(x, y) = 1$ if $x \leq y$ and $r(x, y) = 0$ if x and y are incomparable elements.

A nonempty set X with a fuzzy order r defined on it is called fuzzy ordered set (for short, foset) and we denote it by (X, r).

If Y is a subset of a foset (X, r), then the restriction of r to Y is a fuzzy order in Y and is called induced fuzzy order.

A fuzzy order r is linear (or total) on X if for every $x, y \in X$, we have $r(x, y) > 0$ or $r(y, x) > 0$. If $x \neq y$, by the fuzzy antisymmetry of r, clearly only one of these conditions can be satisfied. A fuzzy ordered set (X, r) in which r is total is called a r-fuzzy chain. Conversely, if for any $x, y \in X$, $r(x, y) > 0$ if and only if $x = y$, then (X, r) is called r-fuzzy antichain.

Next, we give some examples of fuzzy order.

Example 2.2. Let $X = \{a, b, c, d, e, f, g\}$. Then the fuzzy subset r defined on $X \times X$ by the following table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.55</td>
<td>0.40</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.60</td>
<td>0.50</td>
<td>0.35</td>
<td>0.75</td>
</tr>
<tr>
<td>c</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
<td>0.30</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>1</td>
</tr>
</tbody>
</table>

is a fuzzy order on X.

Example 2.3. Let $x, y \in \mathbb{R}$. Then the fuzzy subset r_λ defined for all $x, y \in \mathbb{R}$ by:

$$r_\lambda(x, y) = \begin{cases}
1, & \text{if } x = y; \\
\min(1, \frac{y - x}{\lambda}), & \text{if } x < y; \\
0, & \text{if } x > y;
\end{cases}$$

is a total fuzzy order on \mathbb{R}.

Clearly, $0 \leq r_\lambda(x, y) \leq 1$ for all $x, y \in \mathbb{R}$. Thus r_λ is well defined. Now let us show that r_λ is a fuzzy order on \mathbb{R}.
1) For all \(x \in \mathbb{R} \), \(r_\lambda(x, x) = 1 \). Thus \(r_\lambda \) is fuzzy reflexive.

2) Let \(x, y \in \mathbb{R} \) with \(x \neq y \). Then, \(r_\lambda(x, y) > 0 \) is true only in the case \(x < y \). So, \(r_\lambda \) is fuzzy antisymmetric.

3) Let \(x, y, z \in \mathbb{R} \). Then, we have three cases to study.

3.i) If \(r_\lambda(x, z) = 1 \), then \(r_\lambda(x, z) \geq \min\{r_\lambda(x, y), r_\lambda(y, z)\} \), for all \(y \in \mathbb{R} \).

3.ii) If \(r_\lambda(x, z) = \frac{x-y}{x} > 0 \), then \(x < z \). Hence, for \(y \in \mathbb{R} \) we have three cases to consider:

(a) if \(x < z < y \), then \(r_\lambda(y, z) = 0 \).
(b) If \(x \leq y \leq z \), so \(\frac{x-y}{z} \geq \frac{y-z}{x} \). Hence, we get \(r_\lambda(x, z) \geq r_\lambda(y, z) \).
(c) If \(y < x < z \), then \(r_\lambda(x, y) = 0 \). Thus \(r_\lambda(x, z) \geq \min\{r_\lambda(x, y), r_\lambda(y, z)\} \), for all \(y \in \mathbb{R} \).

3.iii) If \(r_\lambda(x, z) = 0 \), then \(x > z \). So, for every \(y \in \mathbb{R} \) we have three cases:

(a) if \(x > z \geq y \), then \(r_\lambda(x, y) = 0 \).
(b) If \(x \geq y > z \), so \(r_\lambda(y, z) = 0 \).
(c) If \(y > x > z \), then \(r_\lambda(y, z) = 0 \).

Hence, \(r(x, z) \geq \min\{r_\lambda(x, y), r_\lambda(y, z)\} \), for all \(y \in \mathbb{R} \). Thus, \(r_\lambda \) is fuzzy transitive. Therefore, \(r_\lambda \) is a fuzzy order on \(\mathbb{R} \).

Since for all \(x, y \in \mathbb{R} \), such that \(x \neq y \) we have either \(x < y \) or \(y < x \). Then, we get either \(\min(1, \frac{y-x}{x}) > 0 \) or \(\min(1, \frac{x-y}{y}) > 0 \). Thus, \(r_\lambda \) is a total fuzzy order.

Example 2.4. Let \(X = \mathbb{R} \). Then, the fuzzy relation \(r \) defined for all \(x, y \in \mathbb{R} \) by:

\[
r(x, y) = \begin{cases}
1, & \text{if } x = y; \\
0, & \text{if } x > y; \\
1 - \frac{x}{y}, & \text{if } 0 \leq x < y; \\
1 - \frac{y}{x}, & \text{if } x < y \leq 0; \\
1, & \text{if } x < 0 \text{ and } y > 0;
\end{cases}
\]

is a total fuzzy order on \(\mathbb{R} \).

Clearly, \(0 \leq r(x, y) \leq 1 \) for all \(x, y \in \mathbb{R} \). Thus \(r \) is well defined. Now let us show that \(r \) is a fuzzy order on \(\mathbb{R} \).

1) For all \(x \in \mathbb{R} \), \(r(x, x) = 1 \). Thus \(r \) is fuzzy reflexive.

2) Let \(x, y \in \mathbb{R} \) such that \(x \neq y \). Then, we have \(r(x, y)r(y, x) = 0 \). So, \(r \) is fuzzy antisymmetric.

3) Let \(x, y, z \in \mathbb{R} \). Then, we have four cases to study.

3.i) If \(r(x, z) = 1 \), then \(r(x, z) \geq \min\{r(x, y), r(y, z)\} \), for all \(y \in \mathbb{R} \).

3.ii) If \(r(x, z) = 0 \), then \(x > z \). Hence, for every \(y \in \mathbb{R} \) we distinguish the following subcases:

(a) If \(x > z \geq y \), then it holds that \(r(x, y) = 0 \).
(b) If \(x \geq y > z \), then it holds that \(r(y, z) = 0 \).
(c) If \(y > x > z \), then it holds that \(r(y, z) = 0 \).

Thus, \(r(x, z) \geq \min\{r(x, y), r(y, z)\} \), for all \(y \in \mathbb{R} \).
3.iii) If \(r(x, z) = 1 - \frac{x}{z} \), then \(0 \leq x < z \). Hence, for \(y \in \mathbb{R} \) we have four cases to consider:

(a) If \(0 \leq x < z < y \), then \(r(y, z) = 0 \).

(b) If \(0 \leq x < y < z \), then \(1 - \frac{x}{y} \geq 1 - \frac{y}{z} \). Hence, we get \(r(x, z) \geq r(y, z) \).

(c) If \(0 \leq y < x < z \), then \(r(x, y) = 0 \).

(d) If \(y < 0 \leq x < z \), then \(r(x, y) = 0 \).

Thus \(r(x, z) \geq \min \{ r(x, y), r(y, z) \} \), for all \(y \in \mathbb{R} \).

3.iv) If \(r(x, z) = 1 - \frac{x}{z} \), then by using a similar argument as in the case (3.iii) we can see that \(r(x, z) \geq \min \{ r(x, y), r(y, z) \} \), for all \(y \in \mathbb{R} \).

Hence, \(r \) is fuzzy transitive. Thus, \(r \) is a fuzzy order on \(\mathbb{R} \).

As for all \(x, y \in \mathbb{R} \), such that \(x \neq y \) we have either \(x < y \) or \(y < x \), then we get either \(r(x, y) = 1 - \frac{x}{y} > 0 \) or \(r(y, x) = 1 - \frac{y}{x} > 0 \). Thus, \(r \) is a total fuzzy order.

Definition 2.5. Let \((X, r)\) be a fuzzy ordered set and \(A\) be a subset of \(X\).

(a) An element \(u \in X \) is an \(r \)-upper bound of \(A \) if \(r(x, u) > 0 \) for all \(x \in A \). The set of all \(r \)-upper bounds of \(A \) is denoted by \(A^\uparrow \). If \(u \) is the \(r \)-upper bound of \(A \) and \(u \in A \), then \(u \) is called a greatest element of \(A \). The \(r \)-lower bound and least element are defined analogously and the set of all \(r \)-lower bounds of \(A \) is denoted by \(A^\downarrow \).

(b) An element \(m \in A \) is called a maximal element of \(A \) if there is no \(x \neq m \) in \(A \) for which \(r(m, x) > 0 \). \(x = m \). Minimal elements are defined similarly.

(c) As usual, the \(r \)-supremum of \(A \) is defined by \(\sup_r(A) \) = the least element of \(r \)-upper bounds of \(A \) (if it exists). Similarly, the \(r \)-infimum of \(A \) defined by \(\inf_r(A) \) = the greatest element of \(r \)-lower bounds of \(A \) (if it exists).

We write \(x \lor_r y \) the \(r \)-supremum and \(x \land_r y \) the \(r \)-infimum of the set \(\{x, y\}\). For linear fuzzy order, \(x \lor_r y = \max_r \{x, y\} \) and \(x \land_r y = \min_r \{x, y\} \).

Definition 2.6. Let \(r \) be a fuzzy order on \(\mathbb{R} \) and \(x \in \mathbb{R} \). If \(r(0, x) > 0 \), then \(x \) is called an \(r \)-positive real number. The set of them all is denoted by \(\mathbb{R}^+_r \). Similarly, if \(r(x, 0) > 0 \) then \(x \) is called an \(r \)-negative real number, and the set of them all is denoted by \(\mathbb{R}^-_r \).

Definition 2.7. 1) Let \(r \) be a fuzzy order on \(\mathbb{R} \). We say that \(r \) is compatible with the addition if for all \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\), we have

\[
(r(x_1, y_1) > 0 \text{ and } r(x_2, y_2) > 0) \implies (r(x_1 + x_2, y_1 + y_2) > 0).
\]

2) The fuzzy order \(r \) is said to be compatible with the multiplication by scalars if for all \((x, y) \in \mathbb{R}^2\) and \(\lambda > 0 \), we have

\[
(r(x, y) > 0) \implies (r(\lambda x, \lambda y) > 0).
\]

Example 2.8. The fuzzy order relation given in Example 2.4 is compatible with the addition and multiplication by scalars on \(\mathbb{R} \).

(i) \(r \) is compatible with the addition. Indeed, let \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\) such that \(r(x_1, y_1) > 0 \) and \(r(x_2, y_2) > 0 \). By the definition of \(r \) we get that \(x_1 \leq y_1 \) and
$x_2 \leq y_2$. Then, $x_1 + x_2 \leq y_1 + y_2$. Hence, $r(x_1 + x_2, y_1 + y_2) > 0$. Thus, r is compatible with the addition.

(ii) r is compatible with the multiplication by scalars. Indeed, let $(x, y) \in \mathbb{R}^2$ such that $r(x, y) > 0$ and $\lambda > 0$. By the definition of r we get that $x \leq y$. Then, $\lambda x \leq \lambda y$. Hence, $r(\lambda x, \lambda y) > 0$. Thus, r is compatible with the multiplication by scalars.

Therefore, r is compatible with the addition and multiplication by scalar on \mathbb{R}.

Next, we show the following two propositions which we shall need for proving a fuzzy version of Hahn-Banach theorem.

Proposition 2.9. Let $\mathbb{R}_r = (\mathbb{R}, r)$ be the set of all real numbers endowed with a fuzzy order r compatible with the addition and the multiplication by scalar, and $x, y \in \mathbb{R}$. Then we have the following:

(i) If $r(0, x) > 0$ then $r(-x, 0) > 0$.

(ii) If $r(0, x) > 0$ then $r(-x, x) > 0$.

Proof. Let $x, y \in \mathbb{R}_r$. i) Since $r(0, x) > 0$ and by the fuzzy reflexivity $r(-x, -x) = 1 > 0$, then from the compatibility of r with the addition we have that $r(0 + (-x), x + (-x)) > 0$. Hence, $r(-x, 0) > 0$.

ii) We assume that $r(0, x) > 0$. It is clear from (i) that $r(-x, 0) > 0$. Then, from the compatibility of r with the addition we have that $r(-x, x) > 0$. \qed

Proposition 2.10. Let $\mathbb{R}_r = (\mathbb{R}, r)$ be the set of all real numbers endowed with a fuzzy order r compatible with the addition and multiplication by scalar, and let $x, y \in \mathbb{R}$ such that $x \neq y$. Then the following are equivalent.

(i) $r(x, y) > 0$;

(ii) There exists $\tau \in \mathbb{R}$ such that $r(x, \tau) > 0$ and $r(\tau, y) > 0$, (r-fuzzy density).

Proof. Let $x, y \in \mathbb{R}_r$ such that $x \neq y$ and $r(x, y) > 0$. For the one direction, let $\tau = \frac{x + y}{2}$. Since $r(x, x) = 1 > 0$ and $r(x, y) > 0$, from the compatibility of r with the addition we get that $r(x + x, x + y) > 0$.

Now, by the compatibility of r with the multiplication we obtain that

$$r(x, \frac{x + y}{2}) > 0.$$

Thus, $r(x, \tau) > 0$.

In the same way we get that $r(\tau, y) > 0$.

The other direction follows directly from the fuzzy transitivity. \qed

3. Results

In this section we assume that \mathbb{R}_r is the set of real numbers \mathbb{R} endowed with a fuzzy order r compatible with the addition and multiplication by scalar instead of the natural order \leq and we shall prove a fuzzy version of Hahn-Banach extension theorem. The prove of this fuzzy version will follow the same steps as the crisp case. As application, we define the notion of r-fuzzy normed space with the help of r-fuzzy norm as a generalization of crisp normed space, we introduce the notion
of r-fuzzy bounded linear functional and we prove the Hahn-Banach theorem for r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces.

Definition 3.1. Let X be an real linear space, and T a mapping of X into \mathbb{R}_r. We say that T is a r-fuzzy sublinear functional on X if

i) $r(T(x + y), T(x) + T(y)) > 0$ for all $x, y \in X$, (r-subadditivity);

ii) $T(\lambda x) = \lambda T(x)$ for all $x \in X$ and $\lambda \in \mathbb{R}_r^+$, ($r$-positively homogeneous).

Example 3.2. The mapping $T : \mathbb{R}_r \to \mathbb{R}_r$ defined by $T(x) = |x|_r = \max_r\{x, -x\}$ is an r-fuzzy sublinear functional on \mathbb{R}_r.

The following is a useful fact for r-fuzzy sublinear functionals.

Proposition 3.3. If T is an r-fuzzy sublinear functional on a real linear space X then $r(\lambda T(x), T(\lambda x)) > 0$, for all $x \in X$ and $\lambda \in \mathbb{R}_r$.

Proof. Let $x \in X$ and $\lambda \in \mathbb{R}_r$. If $\lambda \in \mathbb{R}_r^+$ we have $T(\lambda x) = \lambda T(x)$. Hence,

$$r(\lambda T(x), T(\lambda x)) = 1 > 0. \quad (1)$$

If $\lambda \in \mathbb{R}_r^-$, then from Proposition 2.9(i) we get that $-\lambda \in \mathbb{R}_r^+$. As $\lambda T(x) = -(\lambda T(x))$ so by the r-positively homogeneous of T we have $\lambda T(x) = -(\lambda T(x)) = -T(\lambda x)$. On the other hand, since $T(\lambda x - \lambda x) = T(0) = 0$, by the r-subadditivity of T we have $r(T(\lambda x + (-\lambda x)), T(\lambda x) + T(-\lambda x)) > 0$. Hence, $r(0, T(\lambda x) + T(-\lambda x)) > 0$. Now, from the compatibility of r with the addition we have $r(-T(\lambda x), T(\lambda x)) > 0$. Thus,

$$r(\lambda T(x), T(\lambda x)) > 0. \quad (2)$$

Therefore, (1) and (2) implies that $r(\lambda T(x), T(\lambda x)) > 0$, for all $x \in X$ and $\lambda \in \mathbb{R}_r$. □

Theorem 3.4 (Fuzzy version of Hahn-Banach theorem). Let X_0 be a subspace of a real linear space X, T a r-fuzzy sublinear functional on X, and u_0 be an linear functional on X_0 such that $r(u_0(x), T(x)) > 0$ for all $x \in X_0$. Then there exists a linear functional u on X extends u_0 to X and satisfies $r(u(x), T(x)) > 0$, for all $x \in X$.

Proof. Let $y \in X$ such that $y \notin X_0$ and denote by Y the vector subspace generated by $X_0 \cup \{y\}$, so

$$Y = \{x_0 + \lambda y \mid x_0 \in X_0 \text{ and } \lambda \in \mathbb{R}_r - \{0\}\}$$

Let $\tau \in \mathbb{R}_r$, and provisionally define

$$u(x_0 + \lambda y) = u_0(x_0) + \lambda \tau.$$

It is easy to show that u is a linear extension of u_0 to Y; hence it remains to choose $\tau \in \mathbb{R}_r$ such that for all $x_0 \in X_0$, and $\lambda \in \mathbb{R}_r - \{0\}$,

$$r(u_0(x_0) + \lambda \tau, T(x_0 + \lambda y)) > 0. \quad (3)$$

For all $\lambda \in \mathbb{R}_r^+ - \{0\}$, replacing x_0 by λx_0, using the r-positive homogeneity of T, and from the compatibility of r with the multiplication, it suffices to see that

$$r(u_0(x_0) + \tau, T(x_0 + y)) > 0. \quad (4)$$
Therefore, from the \(r \)-fuzzy compatibility of \(r \) with the addition, it suffices to see that
\[
 r(u_0(x_0) + \tau, T(x_0 + y)) > 0.
\]

For all \(\lambda \in \mathbb{R}^+_r - \{0\} \), replacing \(x_0 \) by \(\lambda x_0 \), using the \(r \)-positive homogeneity of \(T \), and from the compatibility of \(r \) with the multiplication, we observe that it suffices to see that
\[
 r(-u_0(x_0) - \tau, T(-x_0 - y)) > 0
\]
\[
(5)
\]
Therefore, from the \(r \)-fuzzy compatibility of \(r \) with the addition, it suffices to see that
\[
 r(-u_0(x_0) - T(-x_0 - y), \tau) > 0.
\]
\[
(7)
\]
To see the existence of \(\tau \in \mathbb{R}_r \) satisfying (5) and (6), start by observing that
\[
 r(-u_0(x_0) - T(-x_0 - y), T(x_0 + y) - u_0(x_0)) \geq \min\{r(-u_0(x_0), -u_0(x_0))\},
\]
\[
r(-T(-x_0 - y), T(x_0 + y)) \geq \min\{1, r(-T(-x_0 - y), T(x_0 + y))\}.
\]
In addition, from Proposition 3.3 we have \(r(-T(-x_0 - y), T(x_0 + y)) > 0 \).
Then \(r(-u_0(x_0) - T(-x_0 - y), T(x_0 + y) - u_0(x_0)) > 0 \),
and therefore by Proposition 2.10 there exists \(\tau \in \mathbb{R}_r \) satisfies (5) and (6). Hence, there exists \(\tau \in \mathbb{R}_r \) satisfies (3).
Now, an application of Zorn’s Lemma complete the proof. \(\square \)

Next, we shall give an application of \(r \)-fuzzy Hahn-Banach theorem, but in this subsection, we assume that \(r \) is linear order on \(\mathbb{R} \) compatible with the addition and multiplication.

Definition 3.5. Let \(X \) be a real linear space. An \(r \)-fuzzy norm on \(X \) is a mapping \(x \mapsto \|x\|_r \) from \(X \) into \(\mathbb{R}^+_r \) such that for all \(x, y \in X \) and \(\lambda \in \mathbb{R}^+_r \), the following properties hold:

i) \(\|x\|_r = 0 \) if and only if \(x = 0 \).
ii) \(\|\lambda x\|_r = |\lambda|_r \|x\|_r \).
iii) \(r(\|x + y\|_r, \|x\|_r + \|y\|_r) > 0 \).

A linear space \(X \) equipped with an \(r \)-fuzzy norm \(\|\|_r \) is called an \(r \)-fuzzy normed linear space. We denote it by \((X, \|\|_r) \).

Example 3.6. The \(r \)-fuzzy absolute value \(|x|_r = x \lor_r (-x) \) is an \(r \)-fuzzy norm on \(\mathbb{R}_r \).

i) Let \(x \in \mathbb{R}_r \), since \(r \) is a total order we have either \(r(0, x) > 0 \) or \(r(0, -x) > 0 \).
Then by Proposition 2.9(ii) we have either \(r(-x, x) > 0 \) or \(r(x, -x) > 0 \).
Hence, \(r(0, |x|_r) > 0 \).

ii) Obvious.

iii) \(\|\lambda x\|_r = \lambda x \lor_r (-\lambda x) = |\lambda|_r x \lor_r (-|\lambda|_r) = |\lambda|_r x \lor_r (-x) = |\lambda|_r \|x\|_r \).

iv) Let \(x, y \in \mathbb{R}_r \). To prove that \(r(\|x + y\|_r, \|x\|_r + \|y\|_r) > 0 \) six cases are considered.

a) If \(r(0, x) > 0 \) and \(r(0, y) > 0 \) then
\[
r(\|x + y\|_r, \|x\|_r + \|y\|_r) = r(x + y, x + y) = r > 0.
\]
b) If \(r(x, 0) > 0 \) and \(r(y, 0) > 0 \) then
\[
r(|x + y|_r, |x|_r + |y|_r) = r(-x - y, -x - y) = r > 0.
\]
c) If \(r(0, x) > 0 \), \(r(y, 0) > 0 \) and \(r(x, -y) > 0 \) then
\[
r(|x + y|_r, |x|_r + |y|_r) = r(-x - y, x - y)
\]
\[
\geq \min\{r(-x, x), r(-y, -y)\} > 0.
\]
d) If \(r(0, x) > 0 \), \(r(y, 0) > 0 \) and \(r(-y, x) > 0 \) then
\[
r(|x + y|_r, |x|_r + |y|_r) = r(x + y, x - y)
\]
\[
\geq \min\{r(x, x), r(y, -y)\} > 0.
\]
e) If \(r(x, 0) > 0 \), \(r(0, y) > 0 \) and \(r(y, -x) > 0 \) then
\[
r(|x + y|_r, |x|_r + |y|_r) = r(-x - y, -x + y)
\]
\[
\geq \min\{r(-x, -x), r(-y, y)\} > 0.
\]
f) If \(r(x, 0) > 0 \), \(r(0, y) > 0 \) and \(r(-x, y) > 0 \) then
\[
r(|x + y|_r, |x|_r + |y|_r) = r(x + y, -x + y)
\]
\[
\geq \min\{r(x, -x), r(y, y)\} > 0.
\]

Definition 3.7. Let \((X, \|\cdot\|_r)\) and \((Y, \|\cdot\|_r)\) be \(r\)-fuzzy normed linear spaces. A linear operator \(u\) from \(X\) into \(Y\) is called an \(r\)-fuzzy bounded linear operator if there exists \(K \in \mathbb{R}_r^+\) such that
\[
r(\|u(x)\|_r, K\|x\|_r) > 0, \quad \text{for all } x \in X.
\]

Remark 3.8. The \(r\)-fuzzy norms in \(X\) and \(Y\) are different. But we use same notation \(\|\cdot\|_r\), because there is no confusion.

Example 3.9. Let \((X, \|\cdot\|_r)\) be an \(r\)-fuzzy normed linear space, we define an operator \(u : (X, \|\cdot\|_r) \rightarrow (Y, \|\cdot\|_r)\) by \(u(x) = \lambda x\) where \(\lambda \neq 0 \in \mathbb{R}\) is fixed. Clearly \(u\) is an \(r\)-fuzzy bounded linear operator.

In the following Lemma we describe the \(r\)-fuzzy boundedness of a linear operator between \(r\)-fuzzy normed linear spaces by means of an \(r\)-fuzzy norm of it.

Lemma 3.10. Let \(u\) be an \(r\)-fuzzy bounded linear operator from \((X, \|\cdot\|_r)\) into \((Y, \|\cdot\|_r)\). Then there exists an \(r\)-fuzzy norm of \(u\), denoted by \(\|u\|_r\), such that:
\[
r(\|u(x)\|_r, K\|x\|_r) > 0, \quad \text{for all } x \in X.
\]

Proof. Since \(u\) is an \(r\)-fuzzy bounded linear operator, there exists \(K \in \mathbb{R}_r^+\) such that
\[
r(\|u(x)\|_r, K\|x\|_r) > 0, \quad \text{for all } x \in X.
\]
From the compatibility of \(r\) with the multiplication we obtain
\[
r(\|u(x)\|_r, K\|x\|_r) > 0, \quad \text{for all } x \in X.
\]
Hence,
\[
r(\sup_r\{\|u(x)\|_r : x \in X\}, K) > 0, \quad \text{for all } x \in X.
\]
This means that \(\sup_r(\|u(x)\|_r)\) is finite.
Now we put \(\|u\|_r = \sup_r \{ \frac{\|u(x)\|_r}{\|x\|_r} : x \in X \} \). It is clear that \(\|u\|_r = 0 \) if and only if \(u = 0 \), and that \(\|\lambda u\|_r = |\lambda|_r \|u\|_r \). Since
\[
r(\|u + v(x)\|_r, \|u(x)\|_r + \|v(x)\|_r) > 0, \quad \text{for all } x \in X,
\]
it follows from the compatibility of \(r \) with the multiplication that
\[
r(\|u + v(x)\|_r, \|u(x)\|_r + \|v(x)\|_r) > 0, \quad \text{for all } x \in X.
\]
Then we obtain
\[
r(\|u + v\|_r, \|u\|_r + \|v\|_r) > 0.
\]
Hence, \(\|u\|_r \) is a \(r \)-fuzzy norm of \(u \).

In addition, as \(\|u\|_r = \sup_r \{ \frac{\|u(x)\|_r}{\|x\|_r} : x \in X \} \), we get
\[
r\left(\frac{\|u(x)\|_r}{\|x\|_r}, \|u\|_r\right) > 0, \quad \text{for all } x \in X,
\]
which implies
\[
r\left(\|u(x)\|_r, \|u\|_r \|x\|_r\right) > 0, \quad \text{for all } x \in X.
\]

Theorem 3.11. Let \(X_0 \) be a subspace of an \(r \)-fuzzy normed linear space \(X \), and \(u_0 \) be an \(r \)-fuzzy bounded linear functional on \(X_0 \). Then there exists an \(r \)-fuzzy bounded linear functional \(u \) on \(X \) such that \(u(x) = u_0(x) \) for all \(x \in X_0 \) and \(\|u\|_r = \|u_0\|_r \).

Proof. \(T(x) = \|u_0\|_r \|x\|_r \). It is easy to see that \(T(x) \) is an \(r \)-fuzzy sublinear functional on \(X \). Since \(u_0 \) is an \(r \)-fuzzy bounded linear functional on \(X_0 \), we obtain for all \(x \in X_0 \), that
\[
r(u_0(x), T(x)) = r(u_0(x), \|u_0\|_r \|x\|_r) > 0.
\]
Then from the \(r \)-fuzzy Hahn-Banach theorem there exists a linear functional \(u \) on \(X \) extends \(u_0 \) to \(X \) and satisfies \(r(u(x), \|u_0\|_r \|x\|_r) > 0 \), for all \(x \in X \). Moreover, for all \(x \in X \) we have
\[
r(u(-x), \|u_0\|_r \|x\|_r) > 0.
\]
This shows that
\[
r(-u(x), \|u_0\|_r \|x\|_r) > 0.
\]
Hence,
\[
r(|u(x)|_r, \|u_0\|_r \|x\|_r) > 0.
\]
Therefore, \(u \) is an \(r \)-fuzzy bounded linear functional on \(X \) and satisfies
\[
r(\|u\|_r, \|u_0\|_r) > 0.
\]
But \(u \) extends \(u_0 \), so \(r(\|u_0\|_r, \|u\|_r) > 0 \) and therefore \(\|u\|_r = \|u_0\|_r \). \(\square \)
REFERENCES

Lemnaouar Zedam, Department of Mathematics, Faculty of Mathematics and Informatics, M’sila University, P.O.Box 166 Ichbilia, M’sila 28105, Algeria

E-mail address: L.zedam@yahoo.fr