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THE INCLUSION-EXCLUSION PRINCIPLE FOR IF-STATES

L. C. CIUNGU AND B. RIEČAN

Abstract. Applying two definitions of the union of IF-events, P. Grzegorzewski
gave two generalizations of the inclusion-exclusion principle for IF-events. In

this paper we prove an inclusion-exclusion principle for IF-states based on a

method which can also be used to prove Grzegorzewski’s inclusion-exclusion
principle for probabilities on IF-events. Finally, we give some applications of

this principle by extending some results regarding the classical probabilities to

the case of the IF-states.

1. Introduction

In science as well as in decision making, the information available is always in-
complete, and information processing deals with uncertainty information (fuzziness,
randomness, vagueness, etc.). A generalized theory of uncertainty was developed
in [17] and it was also studied in [18]. In recent years, many approaches of new
probability models try to describe the uncertainty. L. Zadeh was the first to define
the fuzzy events and to develop a probability theory for fuzzy events ([16]).
Intuitionistic Fuzzy Sets (IFS), introduced and studied by Atanassov ([1], [2]), are
an extension of fuzzy set theory in which not only a membership degree is given,
but also a non-membership degree, which is more or less independent. Recently,
the intuitionistic fuzzy sets have been applied to develop theories modelling impre-
cision and pattern recognition ([8]). Various concepts of probability on IFS have
been proved to be very successful for minimizing the uncertainty of initial informa-
tion which involves human judgement.
In [5] and [4] a general form of probabilities on IFS is given and a new representa-
tion theorem is proved for the so-called ϕ-probabilities including a large variety of
special cases.
Using the additivity based on the  Lukasiewicz connectives, in [13], B. Riečan gave
an axiomatic characterization of a probability on IFS-events and proved in [14] a
representation theorem for it.
Another approach of the probability on IF-events was defined in [6] using Gödel
connectives. Applying two definitions of the union of IF-events, P. Grzegorzewski
generalized in [7] the classical inclusion-exclusion principle for the case of IF-events.
In this paper we prove an inclusion-exclusion principle for IF-states based on a
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method which can also be used to prove Grzegorzewski’s inclusion-exclusion prin-
ciple for probabilities on IF-events. Finally, we give some applications of this prin-
ciple by extending some results regarding the classical probabilities to the case of
the IF-states.

2. Preliminaries

Let (Ω,S, P ) be a classical probability space, where Ω is a universe of discourse,
S is a σ-field of subsets of Ω and P is a probability measure over Ω.
An IF-set A in Ω is given by an ordered triple A = {(x, µA(x), νA(x)) | x ∈ Ω},
where µA, νA : Ω→ [0, 1] satisfy the condition µA(x) + νA(x) ≤ 1 for all x ∈ Ω.
The functions µA and νA are respectively called the membership and the non-
membership functions.
For every x ∈ Ω, let θA(x) = 1− µA(x)− νA(x).
Then θ determines the degree of uncertainty and θA(x) is called IF-index of x in
A. An IF-event A is defined as an IF-subset of Ω such that µA, νA are Borel
measurable.
We will denote by IFS(Ω) the family of all IF-sets in Ω and by F the family of all
IF-events. We also define:

0Ω = {(x, 0, 1) | x ∈ Ω}, 1Ω = {(x, 1, 0) | x ∈ Ω}.
Since an IF-event A is well defined by the functions µA, νA, we will use the no-

tation A = (µA, νA). Therefore 0Ω = (0, 1) and 1Ω = (1, 0).

The basic operations on the IF-events A,B are defined by Atanassov in [1] and
[2] as follows:

A ⊆ B iff µA ≤ µB and νA ≥ νB

A = B iff µA = µB and νA = νB

A ∪B = (µA ∨ µB , νA ∧ νB)

A ∩B = (µA ∧ µB , νA ∨ νB)

A⊕B = (µA + µB − µAµB , νAνB)

A�B = (µAµB , νA + νB − νAνB)

Ac = (νA, µA).

The following operations were used by Riečan in [12]-[13]:

(µA, νA)⊕ L (µB , νB) = (µA ⊕ L µB , νA � L νB)

(µA, νA)� L (µB , νB) = (µA � L µB , νA ⊕ L νB),

where x⊕ L y = (x+y)∧1, x� L y = (x+y−1)∨0 are the  Lukasiewicz connectives.

The classical inclusion-exclusion principle for measures states that the equality

µ(

n⋃
i=1

Ai) =

n∑
i=1

µ(Ai)−
∑
i<j

µ(Ai ∩Aj) +
∑

i<j<k

µ(Ai ∩Aj ∩Ak)− · · ·

+(−1)n+1µ(A1 ∩A2 ∩ · · · ∩An)
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holds for any sequence (Ai)
n
i=1 from the domain of a measure µ.

Grzegorzewski defined in [7] the probability of the IF-event A to be a number in
the interval P(A) = [P[(A),P](A)] with P[(A) =

∫
Ω
µAdP , P](A) = 1−

∫
Ω
νAdP .

If θA = 0, then P[(A) = P](A) and the probability of the IF-event A reduces to
the probability of a fuzzy set in the sense of Zadeh’s definition ([16]).
Based on this concept of probability on IF-events, Grzegorzewski proved two ver-
sions of the inclusion-exclusion principle ([7]).
In [10], Kuková and Navara investigated the forms of the inclusion-exclusion prin-
ciple that hold for different types of fuzzy set operations. They proved that the
only continuous fuzzy operations which satisfy the inclusion-exclusion principle are
the Gödel ones, the product operations and some of their ordinal sums.

The notion of an L-state have been introduced in [15] for the case of the pair of
operations (⊕ L,� L) and it was proved in [14] that for an L-state m : F −→ [0, 1],
there exists α ∈ [0, 1] such that m(A) = (1− α)

∫
Ω
µAdP + α(1−

∫
Ω
νAdP ).

In the same manner we define the notion of an IF-state for the case of the pair of
operations (⊕,�).

If An = (µAn
, νAn

) and A = (µA, νA) we will write An ↗ A if µAn
(ω)↗ µA(ω)

and νAn
(ω)↘ νA(ω) for all ω ∈ Ω.

Definition 2.1. A mapping m : F −→ [0, 1] is an IF-state, if the following prop-
erties are satisfied:
(1) m(1Ω) = 1, m(0Ω) = 0;
(2) m(A⊕B) = m(A) +m(B)−m(A�B) for all A,B ∈ F ;
(3) An ↗ A implies m(An)↗ m(A).

The next result can be proved in a similar way as in [14].

Proposition 2.2. Let P(A) = [P[(A),P](A)] be the Grzegorzewski’s probability
where P[(A) =

∫
Ω
µAdP and P](A) = 1−

∫
Ω
νAdP . If α ∈ [0, 1], then the mapping

m : F −→ [0, 1] defined by m(A) = (1− α)P[(A) + αP](A) is an IF-state.

Theorem 2.3. [9] Let Ai be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n and let m be
an IF-state such that m(A) = (1−α)

∫
Ω
µAdP +α(1−

∫
Ω
νAdP ). Then m satisfies

the inclusion-exclusion principle:

m(

n⋃
i=1

Ai) =

n∑
i=1

m(Ai)−
∑
i<j

m(Ai∩Aj)+
∑

i<j<k

m(Ai∩Aj∩Ak)−· · · +(−1)n+1m(

n⋂
i=1

Ai).

3. Inclusion-exclusion Principle for IF-states

In this section we prove an inclusion-exclusion principle for IF-states based on a
method which can also be used to prove Grzegorzewski’s inclusion-exclusion prin-
ciple for probabilities on IF-events.
For the IF-events A = (µA, νA) and B = (µB , νB) we will use the notations:

A+B = (µA + µB , νA + νB), A−B = (µA − µB , νA − νB),

αA = (αµA, αµA), α ∈ R.
Note that ⊕ is defined between two IF-events, but, in general,

∑n
i=1Ai is not

an IF-event. The same mention for A−B and αA.
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Lemma 3.1. Let Ai, B be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n, B = (µB , νB).
Then:

(

n∑
i=1

Ai)⊕B =

n∑
i=1

(Ai ⊕B)− (n− 1)(µB , 0).

Proof. For n = 1 it is obvious.
If n = 2, then we have:
(A1 +A2)⊕B = (µA1 + µA2 , νA1 + νA2)⊕ (µB , νB) = (µA1 + µA2 + µB − µA1µB −
µA2

µB , νA1
νB + νA2

νB).
A1 ⊕B +A2 ⊕B = (µA1

+ µB − µA1
µB , νA1

νB) + (µA2
+ µB − µA2

µB , νA2
νB)

= (µA1
+µA2

+ 2µB −µA1
µB −µA2

µB , νA1
νB + νA2

νB) = (A1 +A2)⊕B+ (µB , 0).
It follows that (A1 +A2)⊕B = A1 ⊕B +A2 ⊕B − (µB , 0).
Assume (

∑n
i=1Ai)⊕B =

∑n
i=1(Ai ⊕B)− (n− 1)(µB , 0) and we have:

(
∑n+1

i=1 Ai)⊕B = (
∑n

i=1Ai +An+1)⊕B = (
∑n

i=1Ai)⊕B +An+1 ⊕B − (µB , 0)

=
∑n

i=1(Ai⊕B)− (n−1)(µB , 0)+An+1⊕B− (µB , 0) =
∑n+1

i=1 (Ai⊕B)−n(µB , 0),
which proves the assertion, according to the induction principle. �

Lemma 3.2. Let Ai, B be IF-events, Ai = (µAi , νAi), i = 1, . . . , n, B = (µB , νB).
(1) If n = 2k, then
(A1−A2 +A3−A4 + · · · −A2k)⊕B = A1⊕B−A2⊕B+ · · · −A2k ⊕B+ (µB , 0);
(2) If n = 2k + 1, then
(A1 − A2 + A3 − A4 + · · · − A2k + A2k+1) ⊕ B = A1 ⊕ B − A2 ⊕ B + · · · − A2k ⊕
B +A2k+1 ⊕B.

Proof. The proof can be done by induction similarly as in Lemma 3.1. �

Theorem 3.3. Let Ai be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n. Then:

n⊕
i=1

Ai =

n∑
i=1

Ai −
n∑

i<j

(Ai �Aj) + · · ·+ (−1)n+1
n⊙

i=1

Ai.

Proof. If n = 1, it is obvious.
For n = 2 we have:
A1 +A2 −A1 �A2 = (µA1 , νA1) + (µA2 , νA2)− (µA1µA2 , νA1 + νA2 − νA1νA2)
= (µA1 + µA2 − µA1µA2 , νA1 + νA2 − νA1 − νA2 + νA1νA2)
= (µA1

+ µA2
− µA1

µA2
, νA1

νA2
) = A1 ⊕A2.

Thus A1 ⊕A2 = A1 +A2 −A1 �A2.

Suppose n = 2m. We have:⊕2m
i=1Ai = (

⊕2m−1
i=1 Ai)⊕A2m = (

∑2m−1
i1=1 Ai1 −

∑2m−1
i1<i2

Ai1 �Ai2

+
∑2m−1

i1<i2<i3
Ai1 �Ai2 �Ai3 − · · ·+A1 �A2 � · · · �A2m−1)⊕A2m

= (
∑2m−1

i1=1 Ai1)⊕A2m − (
∑2m−1

i1<i2
Ai1 �Ai2)⊕A2m

+(
∑2m−1

i1<i2<i3
Ai1 �Ai2 �Ai3)⊕A2m − · · ·+ (A1 �A2 � · · · �A2m−1)⊕A2m

=
∑2m−1

i1=1 (Ai1 ⊕A2m)− ((
2m− 1

1
)− 1)(µA2m

, 0)
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−
∑2m−1

i1<i2
(Ai1 �Ai2)⊕A2m + ((

2m− 1
2

)− 1)(µA2m , 0)

+
∑2m−1

i1<i2<i3
(Ai1 �Ai2 �Ai3)⊕A2m − ((

2m− 1
3

)− 1)(µA2m
, 0)

...

−
∑2m−1

i1<i2<···<i2m−2
(Ai1 �Ai2 � · · · �Ai2m−2

)⊕A2m + ((
2m− 1
2m− 2

)− 1)(µA2m
, 0)

+(A1 �A2 � · · · �A2m−1)⊕A2m

=
∑2m−1

i1=1 (Ai1 +A2m −Ai1 �A2m)− ((
2m− 1

1
)− 1)(µA2m

, 0)

−
∑2m−1

i1<i2
(Ai1 �Ai2 +A2m −Ai1 �Ai2 �A2m) + ((

2m− 1
2

)− 1)(µA2m
, 0)

+
∑2m−1

i1<i2<i3
(Ai1 �Ai2 �Ai3 +A2m −Ai1 �Ai2 �Ai3 �A2m)

−((
2m− 1

3
)− 1)(µA2m , 0)

...
−
∑2m−1

i1<i2<···<i2m−2
(Ai1 �Ai2 � · · · �Ai2m−2

+A2m

−Ai1 �Ai2 � · · · �Ai2m−2 �A2m) + ((
2m− 1
2m− 2

)− 1)(µA2m , 0)

+A1 �A2 � · · · �A2m−1 +A2m −A1 �A2 � · · · �A2m−1 �A2m

=
∑2m−1

i1=1 Ai1 −
∑2m

i1<i2
Ai1 �Ai2 +

∑2m
i1<i2<i3

Ai1 �Ai2 �Ai3 − · · ·
+
∑2m

i1<i2<···<i2m−1
Ai1 �Ai2 � · · · �Ai2m−1

−A1 �A2 � · · · �A2m−1 �A2m

+[(
2m− 1

1
)− (

2m− 1
2

) + (
2m− 1

3
)− · · · − (

2m− 1
2m− 2

) + 1]A2m

−[(
2m− 1

1
)− (

2m− 1
2

) + (
2m− 1

3
)− · · · − (

2m− 1
2m− 2

)](µA2m
, 0)

=
∑2m

i1=1Ai1 −
∑2m

i1<i2
Ai1 �Ai2 +

∑2m
i1<i2<i3

Ai1 �Ai2 �Ai3 − · · ·
+
∑2m

i1<i2<···<i2m−1
Ai1 �Ai2 � · · · �Ai2m−1

−A1 �A2 � · · · �A2m−1 �A2m

−[1− (
2m− 1

1
) + (

2m− 1
2

)− (
2m− 1

3
) + · · ·+ (

2m− 1
2m− 2

)

−(
2m− 1
2m− 1

)]A2m + [1− (
2m− 1

1
) + (

2m− 1
2

)− (
2m− 1

3
) + · · ·+ (

2m− 1
2m− 2

)

−(
2m− 1
2m− 1

)](µA2m , 0)

=
∑2m

i1=1Ai1 −
∑2m

i1<i2
Ai1 �Ai2 +

∑2m
i1<i2<i3

Ai1 �Ai2 �Ai3 − · · ·
+
∑2m

i1<i2<···<i2m−1
Ai1 �Ai2 � · · · �Ai2m−1 −A1 �A2 � · · · �A2m−1 �A2m

−(1− 1)2m−1A2m + (1− 1)2m−1(µA2m
, 0)

=
∑2m

i1=1Ai1 −
∑2m

i1<i2
Ai1 �Ai2 +

∑2m
i1<i2<i3

Ai1 �Ai2 �Ai3 − · · ·
+
∑2m

i1<i2<···<i2m−1
Ai1 �Ai2 � · · · �Ai2m−1

−A1 �A2 � · · · �A2m−1 �A2m.

Similarly, for n = 2m+ 1 we get:
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i=1 Ai =

∑2m+1
i1=1 Ai1 −

∑2m+1
i1<i2

Ai1 �Ai2 +
∑2m+1

i1<i2<i3
Ai1 �Ai2 �Ai3 − · · ·

−
∑2m+1

i1<i2<···<i2m
Ai1 �Ai2 � · · · �Ai2m +A1 �A2 � · · · �A2m �A2m+1.

We conclude that⊕n
i=1Ai =

∑n
i=1Ai −

∑n
i<j(Ai �Aj) + · · ·+ (−1)n+1

⊙n
i=1Ai. �

Corollary 3.4. Let Ai be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n.
If A =

⊕n
i=1Ai, then:

µA =
∑n

i=1 µAi
−
∑n

i<j µAi
� µAj

+ · · ·+ (−1)n+1µA1
� µA2

� · · · � µAn

νA =
∑n

i=1 νAi
−
∑n

i<j νAi
⊕ νAj

+ · · ·+ (−1)n+1νA1
⊕ νA2

⊕ · · · ⊕ νAn
,

where x⊕ y = x+ y − xy and x� y = xy for all x, y ∈ [0, 1].

Theorem 3.5. Let Ai be IF-events, Ai = (µAi , νAi), i = 1, . . . , n and let m :
F −→ [0, 1] be an IF-state such that m(A) = (1 − α)

∫
Ω
µAdP + α(1 −

∫
Ω
νAdP ).

Then m satisfies the inclusion-exclusion principle:

m(

n⊕
i=1

Ai) =

n∑
i=1

m(Ai)−
n∑

i<j

m(Ai �Aj) + · · ·+ (−1)n+1m(

n⊙
i=1

Ai).

Proof. Since m(A) =
∫

Ω
µAdP + α(1−

∫
Ω

(µA + νA)dP ), we have:∑n
i=1m(Ai) =

∑n
i=1

∫
Ω
µAi

dP +
∑n

i=1 α(1−
∫

Ω
(µAi

+ νAi
)dP )

=
∫

Ω
(
∑n

i=1 µAi
)dP + α((

n
1

)−
∫

Ω
(
∑n

i=1(µAi
+ νAi

))dP ).

Similarly,∑
i<j m(Ai �Aj) =

∫
Ω

(
∑

i<j µAi � µAj )dP

+α((
n
2

)−
∫

Ω
(
∑

i<j(µAi � µAj + νAi ⊕ νAj ))dP ),∑
i<j<km(Ai �Aj �Ak) =

∫
Ω

(
∑

i<j<k µAi
� µAj

� µAk
)dP

+α((
n
3

)−
∫

Ω
(
∑

i<j<k(µAi
� µAj

� µAk
+ νAi

⊕ νAj
⊕ νAk

))dP ),

...
m(A1 �A2 � · · · �An) =

∫
Ω

(µA1
� µA2

� · · · � µAn
)dP

+α((
n
n

)−
∫

Ω
(µA1

� µA2
� · · · � µAn

+ νA1
⊕ νA2

⊕ · · · ⊕ νAn
)dP ).

Put A =
⊕n

i=1Ai and sum the previous equalities:∑
im(Ai)−

∑
i<j m(Ai �Aj) +

∑
i<j<km(Ai �Aj �Ak)− · · ·

+(−1)n+1m(A1 �A2 � · · · �An) =
∫

Ω
(
∑

i µAi −
∑

i<k µAi � µAj + · · ·

+(−1)n+1µA1
� · · · � µAn

)dP + α((
n
1

)− (
n
2

) + · · ·+ (−1)n+1(
n
n

))

−α
∫

Ω
(
∑

i µAi −
∑

i<k µAi � µAj + · · ·+ (−1)n+1µA1 � · · · � µAn)dP

−α
∫

Ω
(
∑

i νAi
−
∑

i<k νAi
⊕ νAj

+ · · ·+ (−1)n+1νA1
⊕ · · · ⊕ νAn

)dP

=
∫

Ω
µAdP + α(1− (1− 1)n+1)− α

∫
Ω
µAdP − α

∫
Ω
νAdP

=
∫

Ω
µAdP + α(1−

∫
Ω

(µA + νA)dP ) = m(A). �
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Remark 3.6. Similarly as in Theorem 3.5, we can prove the Grzegorzewski’s
inclusion-exclusion principle for the probability P(A) = [P[(A),P](A)], where
P[(A) =

∫
Ω
µAdP and P](A) = 1−

∫
Ω
νAdP (see [7]):

If we denote T
(n)
k =

∑
1≤i1<i2<···<ik≤n P(Ai1�Ai2�· · ·�Aik), then the probability

P(
⊕n

k=1Ak) is obtained as a solution of the equation

P(

n⊕
k=1

Ak) +

n/2∑
k=1

T
(n)
2k =

n/2∑
k=1

T
(n)
2k−1

if n is even or a solution of the equation

P(

n⊕
k=1

Ak) +

(n+1)/2−1∑
k=1

T
(n)
2k =

(n+1)/2∑
k=1

T
(n)
2k−1

if n is odd.

4. Applications

As applications of inclusion-exclusion principle, we extend the Boole and Bon-
ferroni inequalities from classical probabilities (see for example [11]) to the case of
IF-states.
These results can be easily proved by induction.

Let A1, A2, . . . An be n IF-events (n ≥ 1) and let m : F −→ [0, 1] be an IF-state
such that m(A) = (1− α)

∫
Ω
µAdP + α(1−

∫
Ω
νAdP ).

Proposition 4.1. (Boole inequalities) The following hold:

(1) m(
⊕n

k=1Ak) ≤
∑n

k=1m(Ak);
(2) m(

⋃n
k=1Ak) ≤

∑n
k=1m(Ak).

Proposition 4.2. (Bonferroni inequalities) The following hold:

(1) m(
⊙n

k=1Ak) ≥
∑n

k=1m(Ak)− n+ 1;
(2) m(

⋂n
k=1Ak) ≥

∑n
k=1m(Ak)− n+ 1.

5. Conclusions

(1) P. Grzegorzewski proved in [7], [6] two versions of the inclusion-exclusion
principle for probability on IF-events based on the pairs of operations (∪,∩) and
(⊕,�):
A ∪B = (µA ∨ µB , νA ∧ νB), A ∩B = (µA ∧ µB , νA ∨ νB)
A⊕B = (µA + µB − µAµB , νAνB), A�B = (µAµB , νA + νB − νAνB),
assuming that:
P(A) = [P[(A),P](A)], with P[(A) =

∫
Ω
µAdP , P](A) = 1−

∫
Ω
νAdP.

In this paper we proved an inclusion-exclusion principle for an IF-state m : F −→
[0, 1] such that m(A) = (1− α)

∫
Ω
µAdP + α(1−

∫
Ω
νAdP ), for the case of the pair

of operations (⊕,�). We presented a new method which can also be used to prove
Grzegorzewski’s inclusion-exclusion principle for probabilities on IF-events.
(2) For the case of the pair (∪,∩) of operations on IF-events, it was proved in
[9] the inclusion-exclusion principle for an IF-state m : F −→ [0, 1] such that
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m(A) =
∫

Ω
µAdP + α(1−

∫
Ω

(µA + νA)dQ).
Similarly as in Theorem 3.5, we can prove the inclusion-exclusion principle for the
above IF-state and the pair (⊕,�) of operations on IF-events.
(3) K. Atanassov and B. Riečan introduced two new operations over intuitionistic
fuzzy sets ([3]) which are analogue to the operations ”subtraction” and ”division”.
One can try to investigate properties of the probability on IF-events based on these
operations.

Acknowledgements. For the second author this research has been supported by
the grant VEGA 1/0621/11.
The authors are very grateful to the referees for their valuable suggestions which
improved the presentation of the paper.

References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.
[2] K. Atanassov, Intuitionistic fuzzy sets: theory and applications, Physica Verlag, New York,

(1999).
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