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THE INCLUSION-EXCLUSION PRINCIPLE FOR IF-STATES

L. C. CIUNGU AND B. RIECAN

ABSTRACT. Applying two definitions of the union of IF-events, P. Grzegorzewski
gave two generalizations of the inclusion-exclusion principle for IF-events. In

this paper we prove an inclusion-exclusion principle for IF-states based on a

method which can also be used to prove Grzegorzewski’s inclusion-exclusion

principle for probabilities on IF-events. Finally, we give some applications of

this principle by extending some results regarding the classical probabilities to

the case of the IF-states.

1. Introduction

In science as well as in decision making, the information available is always in-
complete, and information processing deals with uncertainty information (fuzziness,
randomness, vagueness, etc.). A generalized theory of uncertainty was developed
in [17] and it was also studied in [18]. In recent years, many approaches of new
probability models try to describe the uncertainty. L. Zadeh was the first to define
the fuzzy events and to develop a probability theory for fuzzy events ([16]).
Intuitionistic Fuzzy Sets (IFS), introduced and studied by Atanassov ([1], [2]), are
an extension of fuzzy set theory in which not only a membership degree is given,
but also a non-membership degree, which is more or less independent. Recently,
the intuitionistic fuzzy sets have been applied to develop theories modelling impre-
cision and pattern recognition ([8]). Various concepts of probability on IFS have
been proved to be very successful for minimizing the uncertainty of initial informa-
tion which involves human judgement.

In [5] and [4] a general form of probabilities on IFS is given and a new representa-
tion theorem is proved for the so-called p-probabilities including a large variety of
special cases.

Using the additivity based on the Lukasiewicz connectives, in [13], B. Riecan gave
an axiomatic characterization of a probability on IFS-events and proved in [14] a
representation theorem for it.

Another approach of the probability on IF-events was defined in [6] using Gédel
connectives. Applying two definitions of the union of IF-events, P. Grzegorzewski
generalized in [7] the classical inclusion-exclusion principle for the case of IF-events.
In this paper we prove an inclusion-exclusion principle for IF-states based on a
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method which can also be used to prove Grzegorzewski’s inclusion-exclusion prin-
ciple for probabilities on IF-events. Finally, we give some applications of this prin-
ciple by extending some results regarding the classical probabilities to the case of
the IF-states.

2. Preliminaries

Let (Q2,S, P) be a classical probability space, where € is a universe of discourse,
S is a o-field of subsets of Q2 and P is a probability measure over €.
An IF-set A in Q is given by an ordered triple A = {(z, pa(z),va(x)) | € O},
where pg,v4 : Q — [0, 1] satisfy the condition pa(z) + va(z) <1 for all x € Q.
The functions g4 and vy are respectively called the membership and the non-
membership functions.
For every x € Q, let 04(x) =1 — pa(x) — va(z).
Then 6 determines the degree of uncertainty and 64(z) is called IF-index of x in
A. An [F-event A is defined as an IF-subset of Q such that pa,va are Borel
measurable.
We will denote by IFS(Q2) the family of all IF-sets in Q and by F the family of all
[F-events. We also define:

0q ={(z,0,1) |z € Q},1q = {(2,1,0) | z € Q}.

Since an IF-event A is well defined by the functions pa,v4, we will use the no-
tation A = (pa,va). Therefore 0q = (0,1) and 1 = (1,0).

The basic operations on the IF-events A, B are defined by Atanassov in [1] and
[2] as follows:
ACB iff pa <pp and va > v

A=B iff pp=pup and vp =vp

AUB = (pa V up,va Avp)

ANB = (paAup,vaVupg)
A®B=(ua+pp — pallB,VAVE)
A®B = (papB,Va + VB — vaAVB)

A€ = (VA,/LA).
The following operations were used by Rie¢an in [12]-[13]:
(a,va) @ (B, vB) = (1A ®r 4B, VA O VB)

(na,va) O (1B, vB) = (Ba OL kB, VA L VB),
where @y = (x4+y)Al, 2Oy = (x+y—1) VO are the Lukasiewicz connectives.

The classical inclusion-exclusion principle for measures states that the equality
p(lJA) =D m(A) =D u(Ain A+ > wAinA;nAy) -
i=1 i=1 i<j i<j<k
+(—1)n+1u(A1 N A2 n---N An)
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holds for any sequence (A;)?_; from the domain of a measure pu.

Grzegorzewski defined in [7] the probability of the IF-event A to be a number in
the interval P(A) = [P"(A), P¥(A)] with P*(A) = [, padP, P*(A) =1 — [, vadP.
If 4 = 0, then P°(A) = P#(A) and the probability of the IF-event A reduces to
the probability of a fuzzy set in the sense of Zadeh’s definition ([16]).

Based on this concept of probability on IF-events, Grzegorzewski proved two ver-
sions of the inclusion-exclusion principle ([7]).

In [10], Kukovd and Navara investigated the forms of the inclusion-exclusion prin-
ciple that hold for different types of fuzzy set operations. They proved that the
only continuous fuzzy operations which satisfy the inclusion-exclusion principle are
the Gdédel ones, the product operations and some of their ordinal sums.

The notion of an L-state have been introduced in [15] for the case of the pair of
operations (@, ®y,) and it was proved in [14] that for an L-state m : F — [0, 1],
there exists a € [0,1] such that m(A) = (1 — a) [, padP + a(l — [, vadP).

In the same manner we define the notion of an IF-state for the case of the pair of
operations (®,®).

If A, = (pa,,va,) and A = (ua,va) we will write A, S Aif pa, (W) 7 pa(w)
and v, (w) \y va(w) for all w € Q.

Definition 2.1. A mapping m : F — [0,1] is an IF-state, if the following prop-
erties are satisfied:

(1) m(1g) =1, m(0g) = 0;

(2) m(A® B) =m(A) + m(B) —m(A© B) for all A,B € F;

(3) A, /A implies m(Ay,) / m(A).

The next result can be proved in a similar way as in [14].

Proposition 2.2. Let P(A) = [P°(A),P*(A)] be the Grzegorzewski’s probability
where P°(A) = [, padP and P*(A) =1— [,vadP. If o € [0,1], then the mapping
m: F — [0,1] defined by m(A) = (1 — a)P*(A) + aP¥(A) is an IF-state.
Theorem 2.3. [9] Let A; be IF-events, A; = (1a,,va4,), i =1,...,n and let m be
an IF-state such that m(A) = (1 —«) [, uadP + (1 — [ vadP). Then m satisfies
the inclusion-exclusion principle:

n

m(U Ai):Zm(Ai)—Zm(AmAj)-i- D> o m(ANA;NAR) = +(=1)" () Ai).

i<j i<j<k i=1
3. Inclusion-exclusion Principle for IF-states

In this section we prove an inclusion-exclusion principle for IF-states based on a
method which can also be used to prove Grzegorzewski’s inclusion-exclusion prin-
ciple for probabilities on IF-events.
For the IF-events A = (ua,v4) and B = (up,vp) we will use the notations:

A+ B = (/LA+NB,VA+VB)7 A—-B= (NA_NBuyA _VB)’
ad = (apa,opa), o €R.

Note that @ is defined between two IF-events, but, in general, Y . | A; is not
an [F-event. The same mention for A — B and «A.
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Lemma 3.1. Let A;, B be IF-events, A; = (pa,,va,), it=1,...,n, B=(up,vp).

Then:

(Z )® B = Z — (n—1)(u5,0).
Proof. For n =1 it is obvious.
If n = 2, then we have:
(A1+ A2) © B = (1A, + prays va, +va,) @ (uB,vB) = (ha, + pa, + 1B — [tA, B —
KA 1B, VA VE + VA VB).
A1 ® B+ A2 ® B = (pa, + B — pa B, VA, VB) + (A, + B — A HB: VA, VB)
= (pa, +pa, +20B — LA, B — LA 1B, VA VB T VA, VE) = (A1 + A2) © B+ (us, 0).
It follows that (A1 + A2) ®B=A1® B+ A, ® B — (ug,0).
Assume (301 A)®@B=>"(A; ®B) — (n—1)(up,0) and we have:
(S A)® B = (S, Ai+ Avn) & B = (S1, 4) 8 B+ Ay & B — (g, 0)
=31 (Ai® B) = (n—1)(ug, 0) + A1 ® B— (g, 0) = 377 (4; ® B) —n(up,0),
which proves the assertion, according to the induction principle. ([

Lemma 3.2. Let A;, B be IF-events, A; = (pa,,va,), it=1,...,n, B=(up,vp).
(1) If n = 2k, then
(Al—A2+A3—A4+"'—A2k)@B:A1@B—AQ@B-F"'—Agk@B+(/LB7O);
(2) If n =2k +1, then

(A1 — Ay + A3 — Ay +- - — Aok + Aoj11) P B=A41®B—-A&B+---—Au @
B+ A1 ® B.

Proof. The proof can be done by induction similarly as in Lemma 3.1. (]

Theorem 3.3. Let A; be IF-events, A; = (na,,va,), ¢ =1,...,n. Then:

@A—ZA Z @Aj)+-~-+(—1)”+léAi.
i=1

1<j

Proof. If n =1, it is obvious.

For n = 2 we have:

A+ A2 - A1 0 Ay = (:LLAl’VAl) + (MA27VA2) - (:LLAlnu“AZ’VAl + V4, — VAlyAz)
= (/‘LAI T A, — A HAy VA, T VA, — VA — VA, +VA1VA2)

= (pa, +pa, — pra iy, Va,va,) = A1 © A,

ThUSAl@AQZAl—f—AQ—Al @AQ

Suppose n = 2m. We have:
@27” A; = (@?:171 Ai) ® Aoy, = (lelm 11 A Z2m ' An © Ai2

11 <12

£ A QAL QA — +AIO A OO Ag1) ® Ao

11<Z2<13

= (0 Ap) @ Agn — (00 Ay, © Ayy) © Ao,

i1 <12

+(XI AL O A, OAL) @ Agy — 4+ (A O Ay O O Agm1) ® Ao

11 <12<13
2m —1

= Zflm 11(‘411 @ AQm) - (( 1 ) - 1)(HA27YL70)
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m— 2m —1
- 21'21<i21(Ai1 © AZ2) D Agm + (( m2 ) - 1)(N“A2m7 0)

+Z_2m7.1 . (Ail ® AZ'2 ©) Az3) D Az — ((

11 <12<13

o Z§1ﬁ;21<"‘<i27n72 (A“ © Ai2 OO Aizm_Q) @ Agm + (( 2 : 2 ) - 1)(.UJA2m7 0)
+HA10A 0 © A1) ® Ao

= S (Aiy + Ag = Aiy © Ao) = (77 ) = D(pag,,,0)

m 2m — 1
— S (A © Aiy + As = Aiy © Ay © As) + (75 ) = D1, 0)

£ (Aiy © Aiy © Aiy + Ao — Ai, © Aiy © Agy © Aogy)

11 <12<13
2m —1
() = (s, 0)

| —2m—1
- Zi:ii2<---<i2m,2 (All © Ai2 ©-0 Aiszz + Aom

2m —1
e TROP: PORERIOP: PRINIO) A2m) + (( 22 —9 ) - 1)(MA2m70)

+A10A O "®A2m 1+ Ao — Ay ®A2®"'®A2mfl®A2m
2m— 1

- Zl] =1 7'1 - Zl1<7,2 All © At? + le<12<7,3 Ail © Ai? © AZS -

+ ZZ1<12< c<t2m—1 All © A22 ©---0 Al27n—1 Al © A2 ©---0 A2m—1 © A2m
2m —1 2m —1 2m — 1 2m — 1

2m —1 2m —1 2m —1 2m — 1
_[( 1 )_( ) )+( 3 )_..-_(2m_2)](MA2m7O)
_Zzl 1 _Zzl<12 AH ®A12 +211<12<23 Ail ®Ai2 ®Ai3 -
e cign 1 A O A O O Ay, — A O Ay © @ Aoyt © Ag
2m —1 2m —1 2m —1 2m —1
_[1_( 1 )+( 2 )_< 3 )++(2m72>
2m —1 2m —1 2m —1 2m —1 2m —1
_( 2m_1)]A2m+[1_( 1 )+( 2 )_( 3 )++(2m_2)

O (42, 0)

Zflm VAL =T AL @A+ T A © Ay © Ay —
+Zzl<12< iy, Al ©OA O O A, A0 A O O Az © Ao
—(1- 1)27" Ao, + (1 —1)>" 1(MA2m»0)
= Z“ LA — Z“QZ Ay © AZ2 + 2“0203 Ay @A, @Ay — -
—|—Z“<12< igyy Qi OAip, @ O A, | — AT O A0 O Aop—1 © Ao

Similarly, for n = 2m + 1 we get:
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D A = AL - AL 0 A + T AL O A, © Ay —
- Z?:Zt21<-“<izm Ail @ Ai2 @ e @ AiZm + Al @ A2 @ e @ A21’TL @ A2m+1-
We conclude that

D A=20 A=Y (A0 A+ (1) O, A m
Corollary 3.4. Let A; be IF-events, A; = (pa,,va,), t=1,...,n

If A=} | A, then:

A = D00y A, — D A, © piay + o+ (= fa, ©pa, @O pa,

vaA = Z?:l VA, _Z?<j VA, EBij 4+ .+ (_1)n+1l/A1 @VAQ @"'@VAM

where t®y=x+y—zy and x ©y = zy for all x,y € [0,1].

1)n+1

Theorem 3.5. Let A; be IF-events, A; = (pa,,va,), ¢t = 1,...,n and let m :
F — [0,1] be an IF-state such that m(A) = (1 — a) [ padP + (1 — [, vadP).
Then m satisfies the inclusion-exclusion principle:

m(@ 4:) => m(Ai) =Y m(Ai© Aj) +- )"+, @A
i=1 i=1 i<j
Proof. Since m(A) = [, padP + o1 — fQ(,UA + v4)dP), we have:
D m(Ai) =2z Ja F‘A'dP + 2 ol = Jo(pa, +va,)dP)
_fQ = IIJ‘A dP+O[ fQ 1= 1IU‘A +VA))dP)
Similarly,
Zi<j m(4; © Aj) = fQ Zi<j pa, © pa;)dP

= Joic;(a, © pa; +va, ®va,))dP),
Zi<j<k m(A‘ ©A;©Ag) = fsz i<j<ik MA; O pa; O fa, )dP

— Jo(Cicjen(ia, © pa, © pa, +va, ®va, Hva,))dP),

m(A1© A2 @O Ay) = [o(1a, © pa, @+ O pa,)dP
n
+a(( n )_fQ(,u’A1 ®:u’A2 @@MAn +VA1 @VAQ @@VAn)dP)

Put A =@, , A; and sum the previous equalities:

2oimlAi) =2 m(Ai ©Aj) + 30 e m(A © A © Ag) —

HED)"Im(AL 0 A 0 0 An) = [o (30 1a, — Xicp A, O pa, +

1) g, © @ pa )P +al(] ) = (5 )+ (=) )

—a [ (X A, = Xicp a; © pay + -+ (1) s, © - © pa,)dP

_an(Zi va, — Zi<k va, ® va, 4+ 4 (_1)7L+1VA1 PP VA.,L)dP

= JopadP +a(l—(1—-1)"") —a [, padP — o [, vadP

= [qpadP + ol — [(1a+va)dP) = m(A). O
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Remark 3.6. Similarly as in Theorem 3.5, we can prove the Grzegorzewski’s
inclusion-exclusion principle for the probability P(A) = [P’(A), P#(A)], where
P’(A) = [, padP and P¥(A) =1 — [, vadP (see [7]):
If we denote T,gn) =D i<iy<ige...<in<n P(Ai, ©4;,©---© A;, ), then the probability
P(D)_, Ax) is obtained as a solution of the equation

n/2 n/2

PED A+ T =Y Ty,
k=1 k=1 k=1
if n is even or a solution of the equation
n (nt+1)/2-1 (n+1)/2
PP+ Y m'= > 1l
k=1 k=1 k=1

if n is odd.
4. Applications

As applications of inclusion-exclusion principle, we extend the Boole and Bon-
ferroni inequalities from classical probabilities (see for example [11]) to the case of
IF-states.

These results can be easily proved by induction.

Let Ay, Ag, ... A, be n IF-events (n > 1) and let m : F — [0, 1] be an IF-state

such that m(A) = (1 —a) [, padP + (1 — [, vadP).

Proposition 4.1. (Boole inequalities) The following hold:

(1) m(@Z:l Ag) < ZZ:1 m(Ag);
(2) m(UZ:l Ap) < ZZ:l m(Ag).

Proposition 4.2. (Bonferroni inequalities) The following hold:

(1) m(Opey Ak) = Do pmy m(Ax) —n+1;
(2) m(Np_, Ax) > S 0_, m(Ag) —n+ 1.

5. Conclusions

(1) P. Grzegorzewski proved in [7], [6] two versions of the inclusion-exclusion
principle for probability on IF-events based on the pairs of operations (U,N) and
(®,0):

AUB = (uaV pup,vaAve), ANB = (uaApup,vaVvg)

A®B = (pa+pp— paps,vave), A® B = (papup,va +vp —vavp),

assuming that:

P(A) = [P*(A), P¥(A)], with P*(A) = [, padP, PH(A) =1 — [, vadP.

In this paper we proved an inclusion-exclusion principle for an IF-state m : F —
[0,1] such that m(A) = (1 —a) [, padP + a1 — [, vadP), for the case of the pair
of operations (@, ®). We presented a new method which can also be used to prove
Grzegorzewski’s inclusion-exclusion principle for probabilities on IF-events.

(2) For the case of the pair (U,N) of operations on IF-events, it was proved in
[9] the inclusion-exclusion principle for an IF-state m : F — [0,1] such that
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m(A) = [quadP + a1l — [o(pa +v4)dQ).

Similarly as in Theorem 3.5, we can prove the inclusion-exclusion principle for the
above IF-state and the pair (®,®) of operations on IF-events.

(3) K. Atanassov and B. Riec¢an introduced two new operations over intuitionistic
fuzzy sets ([3]) which are analogue to the operations ”subtraction” and ”division”.
One can try to investigate properties of the probability on IF-events based on these
operations.
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