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CONVERGENCE, CONSISTENCY AND STABILITY IN FUZZY

DIFFERENTIAL EQUATIONS

R. EZZATI, K. MALEKNEJAD, S. KHEZERLOO AND M. KHEZERLOO

Abstract. In this paper, we consider First-order fuzzy differential equations

with initial value conditions. The convergence, consistency and stability of dif-
ference method for approximating the solution of fuzzy differential equations

involving generalized H-differentiability, are studied. Then the local trunca-

tion error is defined and sufficient conditions for convergence, consistency and
stability of difference method are provided and fuzzy stiff differential equation

and one example are presented to illustrate the accuracy and capability of our

proposed concepts.

1. Introduction

The topics of fuzzy differential equations, which attracted a growing interest
for some time, in particular, in relation with the fuzzy control, have been rapidly
developed recent years. The fuzzy derivative was first introduced by S. L. Chang,
L. A. Zadeh in [8]. Then, D. Dubois, H. Prade in [9] defined and used the extension
principle. Other methods have been discussed by M. L. Puri, D. A. Ralescu in
[15] and R. Goetschel, W. Voxman in [11]. The fuzzy differential equation and the
initial value problem were treated by O. Kaleva in [12] and [13] and by S. Seikkala
in [18]. The numerical method for solving fuzzy differential equations is introduced
by M. Ma, M. Friedman, A. Kandel in [14] by the standard Euler method and
the authors in [1, 17] presented the new methods for solving FODEs. Recently,
in [3], fuzzy Laplace transforms for solving first order fuzzy differential equations
under generalized H-differentiability is proposed and application of fuzzy Laplace
transforms is represented in [16].
Bede and Gal [4, 5, 6] introduced a more general definition of the derivative for
fuzzy mappings, enlarging the class of differentiable fuzzy mapping, and Chalco
and Flores [7] solved these FDEs.
The structure of this paper would be as follows:
Section 2 gives related basic concepts and classifies fuzzy number, Hausdorff metric,
generalized differential. In Section 3, the main section of the paper, the convergence,
consistency and stability of one-step method for approximating the solution of
fuzzy differential equations are studied. The proposed properties are illustrated by
remarking the fuzzy stiff differential equation in the Section 4. The accuracy and
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capability of our proposed concepts are reviewed by solving one example in Section
5. Finally conclusion is drawn in Section 6.

2. Basic Concepts

A nonempty subset A of R is called convex if and only if (1 − k)x + ky ∈ A
for every x, y ∈ A and k ∈ [0, 1]. By pk(R), we denote the family of all nonempty
compact convex subsets of R.
There are various definitions for the concept of fuzzy numbers ([9, 10])

Definition 2.1. A fuzzy number is a function u : R→ [0, 1] satisfying the following
properties:

(i) u is normal, i.e. ∃x0 ∈ R with u(x0) = 1,
(ii) u is a convex fuzzy set (i.e. u(λx + (1 − λ)y) ≥ min{u(x), u(y)}∀x, y ∈ R, λ ∈
[0, 1]),
(iii) u is upper semi-continuous on R,

(iv) {x ∈ R : u(x) > 0} is compact, where A denotes the closure of A.

The set of all fuzzy real numbers is denoted by E. Obviously R ⊂ E. Here
R ⊂ E is understood as R ={χx : χ is usual real number}. For 0 < r ≤ 1, denote

[u]r = {x ∈ R;u(x) ≥ r} and [u]0 = {x ∈ R;u(x) > 0}. Then it is well-known that
for any r ∈ [0, 1], [u]r is a bounded closed interval. For u, v ∈ E, and λ ∈ R, where
sum u+ v and the product λ.u are defined by [u+ v]r = [u]r + [v]r, [λ.u]r = λ[u]r,
∀r ∈ [0, 1], where [u]r + [v]r = {x + y : x ∈ [u]r, y ∈ [v]r} means the conventional
addition of two intervals (subsets) of R and λ[u]r = {λx : x ∈ [u]r} means the
conventional product between a scalar and a subset of R(see e.g. [9, 19].
Another definition for a fuzzy number is as follows:

Definition 2.2. An arbitrary fuzzy number in the parametric form is represented
by an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which satisfy the following
requirements:
1. u(r) is a bounded left-continuous non-decreasing function over [0, 1].
2. u(r) is a bounded left-continuous non-increasing function over [0, 1].
3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1. We
recall that for a < b < c, a, b, c ∈ R, the triangular fuzzy number u = (a, b, c)
determined by a, b, c is given such that u(r) = a+ (b− c)r and u(r) = c− (c− b)r
are the endpoints of the r−level sets, for all r ∈ [0, 1]. Here u(r) = u(r) = b and
it is denoted by [u]1. For arbitrary u = (u(r), u(r)), v = (v(r), v(r)), we define
addition and multiplication by k as follows:
1. (u+ v)(r) = (u(r) + v(r)),

2. (u+ v)(r) = (u(r) + v(r)),

3. (ku)(r) = ku(r), (ku)(r) = ku(r), k ≥ 0,

4. (ku)(r) = ku(r), (ku)(r) = ku(r), k < 0.
In this paper, we represent an arbitrary fuzzy number with compact support by
a pair of functions (u(r), u(r)), 0 ≤ r ≤ 1. Also, we use the Hausdorff distance



Convergence, Consistency and Stability in Fuzzy Differential Equations 97

between fuzzy numbers. This fuzzy number space as shown in [5] can be embedded
into Banach space B = c[0, 1]×c[0, 1] where the metric is usually defined as follows:
Let E be the set of all upper semicontinuous normal convex fuzzy numbers with
bounded r−level sets. Since the r−levels of fuzzy numbers are always closed and
bounded, the intervals are written as u[r] = [u(r), u(r)], for all r. We denote by ω
the set of all nonempty compact subsets of R and by ωc the subsets of ω consisting
of nonempty convex compact sets. Recall that

ρ(x,A) = min
a∈A
‖x− a‖

is the distance of a point x ∈ R from A ∈ ω and the Hausdorff separation ρ(A,B)
of A,B ∈ ω is defined as

ρ(A,B) = max
a∈A

ρ(a,B).

Note that the notation is consistent, since ρ(a,B) = ρ({a}, B). Now, ρ is not a
metric. In fact, ρ(A,B) = 0 if and only if A ⊆ B. The Hausdorff metric dH on ω
is defined by

dH(A,B) = max{ρ(A,B), ρ(B,A)}.
The metric d∞ is defined on E as

d∞(u, v) = sup{dH(u[r], v[r]) : 0 ≤ r ≤ 1}, u, v ∈ E.
For arbitrary (u, v) ∈ c[0, 1]× c[0, 1]. The following properties are well-known. (see
e.g. [10, 19])
(i) d∞(u+ w, v + w) = d∞(u, v), ∀u, v, w ∈ E,
(ii) d∞(k.u, k.v) = |k|d∞(u, v), ∀k ∈ R, u, v ∈ E,
(iii) d∞(u+ v, w + e) ≤ d∞(u,w) + d∞(v, e), ∀u, v, w, e ∈ E,
(iv) d∞(u, v) = d∞(v, u), ∀u, v ∈ E

Theorem 2.3. (i) If we define 0̃ = χ0, then 0̃ ∈ E is a neutral element with respect

to addition, i.e. u+ 0̃ = 0̃ + u = u, for all u ∈ E.
(ii) With respect to 0̃, none of u ∈ E \R, has opposite in E.
(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E, we have (a+ b).u =
a.u + b.u; however, this relation dose not necessarily hold for any a, b ∈ R, in
general.
(iv) For any λ ∈ R and any u, v ∈ E, we have λ.(u+ v) = λ.u+ λ.v;
(v) For any λ, µ ∈ R and any u ∈ E, we have λ.(µ.u) = (λ.µ).u.(see [19])

Remark 2.4. d∞(u, 0) = d∞(0, u) =‖ u ‖ .

Definition 2.5. Consider x, y ∈ E. If there exists z ∈ E such that x = y+ z, then
z is called the H-difference of x and y and it is denoted by x	 y.

In this paper, the sign ”	” always stands for H-difference and note that x 	
y 6= x + (−y). Let us recall the definition of strongly generalized differentiability
introduced in [5].

Lemma 2.6. [5], Let u, v ∈ E be such that u(1) − u(0) > 0, u(0) − u(1) > 0 and
len(v) = (v(0)−v(0)) ≤ min{u(1)−u(0), u(0)−u(1)}. Then the H-difference u	v
exists.
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Definition 2.7. Let E be a set of all fuzzy numbers, we say that f(x) is a fuzzy
valued function if f : < → E.

Definition 2.8. [6], Let f : (a, b) → E and x0 ∈ (a, b). We say that f is strongly
generalized differentiable at x0 (Bede-Gal differentiability), if there exists an ele-

ment f
′
(x0) ∈ E, such that

(i) for all h > 0 sufficiently small,

∃f(x0 + h)	 f(x0), ∃f(x0)	 f(x0 − h)

and the limits(in the metric d∞)

lim
h↘0

f(x0 + h)	 f(x0)

h
= lim
h↘0

f(x0)	 f(x0 − h)

h
= f

′
(x0)

or
(ii) for all h > 0 sufficiently small,

∃f(x0)	 f(x0 + h), ∃f(x0 − h)	 f(x0)

and the limits(in the metric d∞)

lim
h↘0

f(x0)	 f(x0 + h)

−h
= lim
h↘0

f(x0 − h)	 f(x0)

−h
= f

′
(x0)

or
(iii) for all h > 0 sufficiently small,

∃f(x0 + h)	 f(x0), ∃f(x0 − h)	 f(x0)

and the limits(in the metric d∞)

lim
h↘0

f(x0 + h)	 f(x0)

h
= lim
h↘0

f(x0 − h)	 f(x0)

−h
= f

′
(x0)

or
(iv) for all h > 0 sufficiently small,

∃f(x0)	 f(x0 + h), ∃f(x0)	 f(x0 − h)

and the limits(in the metric d∞)

lim
h↘0

f(x0)	 f(x0 + h)

−h
= lim
h↘0

f(x0)	 f(x0 − h)

h
= f

′
(x0)

(h and −h at denominators mean 1
h and −1

h , respectively ∀s = 1 . . . n)

Proposition 2.9. [9], If f : (a, b)→ E is a continuous fuzzy valued function then
g(x) =

∫ x
a
f(t)d is differentiable with derivative g′(x) = f(x) .

Lemma 2.10. [5], For x0 ∈ R, the fuzzy differential equation y
′

= f(x, y), y(x0) =
y0 ∈ E where f : R×E −→ E is supposed to be continuous, is equivalent to one of
the integral equations:
y(x) = y0 +

∫ x
x0
f(t, y(t))dt, ∀x ∈ [x0, x1],

or
y0 = y(x) + (−1).

∫ x
x0
f(t, y(t))dt, ∀x ∈ [x0, x1],

on some interval (x0, x1) ⊂ R, depending on the strong differentiability considered,



Convergence, Consistency and Stability in Fuzzy Differential Equations 99

(i) or (ii), respectively.
Here the equivalence between two equations means that any solution of an equation
is a solution for the other one,too.

Remark 2.11. [5], In the case of strongly generalized differentiability, to the fuzzy

differential equation y
′

= f(x, y) we may attach two different integral equations,
while in the case of differentiability in the sense of the definition of H-differentiable,
we may attach only one. The second integral equation in Lemma (2.10) can be
written in the form y(x) = y0 	 (−1).

∫ x
x0
f(t, y(t))dt.

Proposition 2.12. [6], If f, g : (a, b) → E are generalized differentiable at x ∈
(a, b) in the same case of differentiability, then f + g is generalized differentiable at

x and (f + g)
′
(x) = f

′
(x) + g

′
(x).

The following theorems concern the existence of solutions of a fuzzy initial-value
problem under generalized differentiability (see [5]).

Theorem 2.13. Let us suppose that the following conditions hold: (a)Let R0 =
[x0, x0 + p] × B(y0, q), p, q > 0, y0 ∈ E, where B(y0, q) = {y ∈ E : D(y, y0) ≤ q}
denote a closed ball in E and let f : R0 −→ E be a continuous function such
that d∞(0̃, f(x, y)) = ‖f(x, y)‖ ≤ M for all (x, y) ∈ R0 (b) Let g : [x0, x0 + p] ×
[0, q] −→ E, such that g(x, 0) ≡ 0 and 0 ≤ g(x, u) ≤ M1, ∀x ∈ [x0, x0 + p],
0 ≤ u ≤ q, such that g(x, u) is non-decreasing in u and g is such that the initial-

value problem u
′
(x) = g(x, u(x)), u(x0) = 0 has only the solution u(x) ≡ 0 on

[x0, x0 + p]. (c) We have d∞(f(x, y), f(x, z)) ≤ g(x, d∞(y, z)), ∀(x, y), (x, z) ∈ R0

and d∞(y, z) ≤ q. (d) There exists d > 0 such that for x ∈ [x0, x0 + d] the sequence
yn : [x0, x0 + d] −→ E given by y0(x) = y0, yn+1(x) = y0 	 (−1).

∫ x
x0
f(t, yn)dt is

defined for any n ∈ N . Then the fuzzy initial -value problem{
y′ = f(x, y),
y(x0) = y0

has two solutions (one (i)-differentiable and the other one (ii)-differentiable) y, ŷ :
[x0, x0 + r] −→ B(y0, q) where r = min{p, qM , q

M1
, d} and the successive iterations

y0(x) = y0, yn+1(x) = y0 +

∫ x

x0

f(t, yn(t))dt

and

ŷ0(x) = y0, ŷn+1(x) = y0 	 (−1).

∫ x

x0

f(t, ŷn(t))dt

converge to these two solutions respectively.

According to theorem (2.13), we restrict our attention to functions which are (i)-
or (ii)-differentiable on their domain except for a finite number of points (see also
[5]).
The following corollary gives simple sufficient condition for the existence of fuzzy
differential equations under strongly generalized differentiability.

Corollary 2.14. Let f : R0 −→ E where R0 = [x0, x0 + p] × (B(y0, q) ∩ E), and
y0 ∈ E such that y(0, 1) − y(0, 0) and y(0, 0) − y(0, 1). Let m = min{y(0, 1) −
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y(0, 0), y(0, 0) − y(0, 1)}. Under the assumptions (a)-(c) of Theorem (2.13), the
fuzzy initial-value problem

y′ = f(x, y), y(x0) = y0

has two solutions y, y : [x0, x0 + r] −→ B(ỹ0, q) where r = min{p, qM , q
M1
, m

2M } and

the successive iterations in (2.13) converge to these two solutions.

Lemma 2.15. [6], The H-difference is a continuous function in both of argument.

Definition 2.16. [2], Let f : (a, b) × E → E and x0 ∈ (a, b). We Define the nth-
order differential of f as follow: We say that f is strongly generalized differentiable
of the nth−order at x0. If there exists an element f (s)(x0) ∈ E, ∀s = 1, . . . , n,
such that

(i) for all h > 0 sufficiently small,

∃f (s−1)(x0 + h)	 f (s−1)(x0), ∃f (s−1)(x0)	 f (s−1)(x0 − h)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0 + h)	 f (s−1)(x0)

h
= lim
h↘0

f (s−1)(x0)	 f (s−1)(x0 − h)

h
= f (s)(x0)

or
(ii) for all h > 0 sufficiently small,

∃f (s−1)(x0)	 f (s−1)(x0 + h), ∃f (s−1)(x0 − h)	 f (s−1)(x0)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0)	 f (s−1)(x0 + h)

−h
= lim
h↘0

f (s−1)(x0 − h)	 f(x0)

−h
= f (s)(x0)

or
(iii) for all h > 0 sufficiently small,

∃f (s−1)(x0 + h)	 f (s−1)(x0), ∃f (s−1)(x0 − h)	 f (s−1)(x0)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0 + h)	 f (s−1)(x0)

h
= lim
h↘0

f (s−1)(x0 − h)	 f (s−1)(x0)

−h
= f (s)(x0)

or
(iv) for all h > 0 sufficiently small,

∃f (s−1)(x0)	 f (s−1)(x0 + h), ∃f (s−1)(x0)	 f (s−1)(x0 − h)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0)	 f (s−1)(x0 + h)

−h
= lim
h↘0

f (s−1)(x0)	 f (s−1)(x0 − h)

h
= f (s)(x0)

(h and −h at denominators mean 1
h and −1

h , respectively ∀s = 1 . . . n)

Lemma 2.17. [6], for arbitrary (u, v) ∈ c[0, 1]× c[0, 1] we have:

d∞(u	 w, u	 v) = d∞(w, v), ∀u, v, w ∈ E
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Definition 2.18. The fuzzy valued function f : [a, b] → E is bounded on [a, b] if
there exists a real value M > 0 such that

‖f‖ ≤M

In this section, we are going to define the convergence, consistency and stability
of the one-step method and compute its local truncation error.

3. Convergence, Consistency and Stability of the One-step Method

Consider the first-order fuzzy differential equation with initial value{
y
′

= f(t, y), 0 ≤ t ≤ b
y(0) = y0

(1)

where y is a fuzzy function of t, f(t, y) is a fuzzy function of crisp variable t and
fuzzy variable y, y0 ∈ E and y is generalized differentiable of (n + 1)-th order.
Hence f is generalized differentiable of n-th order.

Definition 3.1. A one-step method for approximating the solution of fuzzy differ-
ential equation (1) is a method which can be written in the form{

yn+1 = yn + hφ(tn, yn, h), n = 0, . . . , N − 1
y(0) = y0

(2)

if y would be (i)-differentiable and{
yn+1 = yn 	 (−1)hφ(tn, yn, h), n = 0, . . . , N − 1
y(0) = y0

(3)

if y would be (ii)-differentiable and the function φ is determined by h, tn, yn.

We have derived the following lemma from the Theorem (2.13).

Lemma 3.2. If f(t, y) is a continuous fuzzy function of t and satisfies the Lipschitz
condition in y in region 0 ≤ t ≤ b, −∞ ≤ y ≤ ∞, then equation (1) has the unique
differentiable fuzzy solution Y (t) such that

Y
′
(t) = f(t, Y (t)), Y (0) = y0.

Thus sufficient conditions for the existence of a unique solution of equation (1)
are:

1) Continuity of f ,
2) Lipschitz condition

d∞(f(t, x), f(t, y)) ≤ Ld∞(x, y), L > 0

Definition 3.3. The one-step methods (2) and (3) are said to be convergent with
respect to the fuzzy differential equation it approximates if

lim
n→∞

d∞(yn, Y (tn)) = 0, 0 ≤ t ≤ b (4)

where Y (t) denotes the exact solution and y(tn) := yn is the approximation ob-
tained from the difference method (2) and (3) at the n−th step.
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Definition 3.4. A one-step method (2) or (3) is stable if for each fuzzy differential
equation satisfying a Lipschitz condition with respect to the y, there exist positive
constants h0 and K such that two different solutions yn and yn each satisfying
equation (1) are such that

d∞(yn, yn) ≤ Kd∞(y0, y0), 0 ≤ h ≤ h0 (5)

Before starting the next theorem, we note the following lemma which is needed in
its proof.

Lemma 3.5. For arbitrary (u, v), (w, p) ∈ c[0, 1]× c[0, 1], we have:

d∞(u	 w, v 	 p) ≤ d∞(u, v) + d∞(w, p) ∀u, v, w, p ∈ E (6)

Proof.

d∞(u	 w, v 	 p) = sup{dH((u	 w)[r], (v 	 p)[r]) : 0 ≤ r ≤ 1}

= sup{max{|(u	 w)[r]− (v 	 p)[r]|,

|(u	 w)[r]− (v 	 p)[r]|} : 0 ≤ r ≤ 1}

= sup{max{|u(r)− w(r)− (v(r)− p(r))|,

|u(r)− w(r)− (v(r)− p(r))|} : 0 ≤ r ≤ 1}

≤ sup{max{|u(r)− v(r)|+ |p(r)− w(r)|,

|u(r)− v(r)|+ |p(r)− w(r))|} : 0 ≤ r ≤ 1}

≤ sup{max{|u(r)− v(r)|, |u(r)− v(r)|}

+max{|p(r)− w(r)|, |p(r)− w(r))|} : 0 ≤ r ≤ 1}

≤ sup{max{|u(r)− v(r)|, |u(r)− v(r)|} : 0 ≤ r ≤ 1}

+sup{max{|p(r)− w(r)|, |p(r)− w(r))|} : 0 ≤ r ≤ 1}

= d∞(u, v) + d∞(w, p)

�
Theorem 3.6. If φ(t, y, h) satisfy a Lipschitz condition in y, then the methods
given by (2) and (3) are stable.

Proof. First, let y is (i)-differentiable, therefore

d∞(yn+1, yn+1) = d∞(yn + hφ(tn, yn, h), yn + hφ(tn, yn, h))

≤ d∞(yn, yn) + hd∞(φ(tn, yn, h), φ(tn, yn, h))

≤ d∞(yn, yn) + hLd∞(yn, yn)

= (1 + hL)d∞(yn, yn) = k1d∞(yn, yn)

≤ k1k2d∞(yn−1, yn−1) ≤ · · · ≤ Kd∞(y0, y0) (7)



Convergence, Consistency and Stability in Fuzzy Differential Equations 103

Now, let y is (ii)-differentiable, by using lemma(3.5), we have

d∞(yn+1, yn+1) = d∞(yn 	 (−1)hφ(tn, yn, h), yn 	 (−1)hφ(tn, yn, h))

≤ d∞(yn, yn) + hd∞(φ(tn, yn, h), φ(tn, yn, h))

≤ d∞(yn, yn) + hLd∞(yn, yn)

= (1 + hL)d∞(yn, yn) = k1d∞(yn, yn)

≤ k1k2d∞(yn−1, yn−1) ≤ · · · ≤ Kd∞(y0, y0). (8)

�
Definition 3.7. The one-step method (2) has the local truncation error

Y (tn+h)	Y (tn)
h 	 φ(tn, Y (tn), h) = τn(h),

or

Y (tn)	Y (tn−h)
h 	 φ(tn − h, Y (tn − h), h) = γn(h) (9)

for each n = 0, . . . , N − 1 and the one-step method (3) has the local truncation
error 

Y (tn)	Y (tn+h)
−h 	 φ(tn + h, Y (tn + h), h) = τn(h),

or

Y (tn−h)	Y (tn)
−h 	 φ(tn, Y (tn), h) = γn(h) (10)

for each n = 0, . . . , N − 1.

Definition 3.8. A one-step method (2) or (3) with the local truncation error τn(h)
and γn(h) at the n-th step said to be consistent with the differential equation that
it approximates if

limh→0 τn(h) = 0̃,

limh→0 γn(h) = 0̃, n = 1, . . . , N. (11)

Definition 3.9. The local truncation error of one-step method (2) is in the order
(hα) where α = min{q, p} and

τn(h) = O(hq), γn(h) = O(hp).

If we suppose that

φ(tn, yn, h) = f(tn, yn) +
h

2
f
′
(tn, yn) + · · ·+ hn−1

n!
f (n)(ξn, y(ξn)) (12)

so, the difference method corresponding to (2) and (3) are called the Taylor method
of order n and in particular, the Taylor method of order 1 is called the Euler method.
Therefore, we have
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Corollary 3.10. If the Taylor method of order n is used to approximate the solution
equation (1) with step size h and if Y ∈ Cn+1[0, b], then the local truncation error
is O(hn).

Proof. Y is generalized differentiable of (n+ 1)th-order and since we just need the
kind of the differentiability of Y at tn (the kind of differentiability of the Y (s),
s = 1, . . . , n+ 1, is not important) then without loss of generality we can consider
Y is (i)-differentiable at tn, so by using the Taylor polynomial, we have:

Y (tn+1) = Y (tn + h) = Y (tn) + hY
′
(tn) +

h2

2
Y
′′
(tn) + · · ·+ hn

n!
Y (n)(tn)

+ hn+1

(n+1)!
Y (n+1)(ξn), (13)

where ξn ∈ (tn, tn + h) and

Y (tn) = Y (tn − h) + hY
′
(tn − h) + h2

2
Y
′′
(tn − h) + · · ·+ hn

n!
Y (n)(tn − h)

+ hn+1

(n+1)!
Y (n+1)(ξn−1), (14)

where ξn−1 ∈ (tn − h, tn). If we define:

φ(tn, Y (tn), h) = Y
′
(tn) + h

2
Y
′′

(tn) + · · ·+ hn−1

n!
Y (n)(tn),

φ(tn − h, Y (tn − h), h) = Y
′
(tn − h) + h

2
Y
′′

(tn − h) + · · ·+ hn−1

n!
Y (n)(tn − h), (15)

therefore we have:

Y (tn + h) = Y (tn) + hφ(tn, Y (tn), h) +
hn+1

(n+1)!
Y (n+1)(ξn),

Y (tn) = Y (tn − h) + hφ(tn − h, Y (tn − h), h) + hn+1

(n+1)!
Y (n+1)(ξn−1), (16)

thus the local truncation error is obtained as follows:
τn(h) =

Y (tn+h)	Y (tn)
h

	 φ(tn, Y (tn), h),

γn(h) =
Y (tn)	Y (tn−h)

h
	 φ(tn − h, Y (tn − h), h). (17)

Since Y ∈ Cn+1[0, b], we have Y n+1(t) = fn(t, Y (t)) bounded on [0, b] and

τn(h) = O(hn), γn(h) = O(hn).

Now, we suppose that Y is (ii)-differentiable at tn (we just need the kind of
the differentiability of Y at tn and the kind of differentiability of the Y (s), s =
1, . . . , n+ 1, is not important) and we define

(	1)n =

 +1, if n is even

−1, if n is odd (18)

In this paper, the sign ” 	 b ” always stands for ” 0̃ 	 b ” and notes that 	b =
0̃	 b 6= 0̃ + (−b).
So by using the Taylor polynomial, we have:

Y (tn) = Y (tn + h) + (	1)hY
′
(tn + h) + (	1)2h2

2
Y
′′
(tn + h) + · · ·

+ (	1)nhn

n!
Y (n)(tn + h) + (	1)n+1hn+1

(n+1)!
Y (n+1)(υn) + · · · (19)
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where υn ∈ (tn, tn + h) and

Y (tn − h) = Y (tn) + (	1)hY
′
(tn) +

(	1)2h2

2
Y
′′
(tn) + · · ·

+ (	1)nhn

n!
Y (n)(tn) +

(	1)n+1hn+1

(n+1)!
Y (n+1)(υn−1) + · · · (20)

where υn−1 ∈ (tn − h, tn). If we define:

φ(tn + h, Y (tn + h), h) = Y
′
(tn + h) + (	1)h

2
Y
′′
(tn + h)

+ · · ·+ (	1)n−1hn−1

n!
Y (n)(tn + h),

φ(tn, Y (tn), h) = Y
′
(tn) + (	1)h

2
Y
′′
(tn) + · · ·+ (	1)n−1hn−1

n!
Y (n)(tn − h) (21)

therefore, we have:

Y (tn) = Y (tn + h) + (	1)hφ(tn + h, Y (tn + h), h) +
(	1)n+1hn+1

(n+1)!
Y (n+1)(υn) + · · ·

= Y (tn + h) + (−1)hφ(tn + h, Y (tn + h), h) +
(	1)n+1hn+1

(n+1)!
Y (n+1)(υn) + · · · (22)

and

Y (tn − h) = Y (tn) + (	1)hφ(tn, Y (tn), h) +
(	1)n+1hn+1

(n+1)!
Y (n+1)(υn−1) + · · ·

= Y (tn) + (−1)hφ(tn, Y (tn), h) +
(	1)n+1hn+1

(n+1)!
Y (n+1)(υn−1) + · · · (23)

thus the local truncation error is obtained as follows:
τn(h) =

Y (tn)	Y (tn+h)
−h 	 φ(tn + h, Y (tn + h), h),

γn(h) =
Y (tn−h)	Y (tn)

−h 	 φ(tn, Y (tn), h). (24)

Since Y ∈ Cn+1[0, b], we have Y n+1(t) = fn(t, Y (t)) bounded on [0, b] and

τn(h) = O(hn), γn(h) = O(hn).

�
Lemma 3.11. [1], Let the sequence of numbers {wn}Nn=0 satisfies

|wn+1| ≤ A|wn|+B, 0 ≤ n ≤ N − 1,

for the given positive constants A and B. Then

|wn| ≤ An|w0|+B
An − 1

A− 1
, 0 ≤ n ≤ N.

Theorem 3.12. If φ(t, y, h) is continuous in y, t and h for 0 ≤ h ≤ h0, 0 ≤ t ≤ b
and all y and if it satisfies a Lipschitz condition in y, t and h in that region, a
necessary and sufficient condition for convergence is that

φ(t, y, 0) = f(t, y). (25)

Equation (25) is called the condition of consistency.
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Proof. Let φ(t, y, 0) = g(t, y). Since g satisfies the conditions of lemma (3.2), the
fuzzy differential equation

z
′
= g(t, z), z0 = y0, (26)

has a unique differentiable solution.
We will show that, if the numerical solution given by (2) is (i)-differentiable then it
converges to z(t) and if the numerical solution given by (3) is (ii)-differentiable then
it converges to z(t) and hence that f = g is a necessary and sufficient condition.
Let the numerical solution is (i)-differentiable and it satisfies

yn+1 = yn + hφ(tn, yn, h). (27)

By the mean value theorem, we have

z(tn+1) = z(tn) + hg(tn + θnh, z(tn + θnh)), 0 < θn < 1. (28)

Denoting en = d∞(yn, z(tn)), hence

en+1 ≤ en + hd∞(φ(tn, yn, h), g(tn + θnh, z(tn + θnh)))

= en + hd∞[φ(tn, yn, h) + φ(tn, z(tn), h) + φ(tn, z(tn), 0)

, g(tn + θnh, z(tn + θnh)) + φ(tn, z(tn), h) + φ(tn, z(tn), 0)]

≤ en + hd∞(φ(tn, yn, h), φ(tn, z(tn), h))

+hd∞(φ(tn, z(tn), 0), φ(tn, z(tn), h))

+hd∞(φ(tn, z(tn), 0), g(tn + θnh, z(tn + θnh)))

≤ en + hLen + h2L1 + hd∞(g(tn, z(tn)), g(tn + θnh, z(tn + θnh)))

= en(1 + Lh) + h2L1

+hd∞[g(tn, z(tn)) + g(tn, z(tn + θnh))

, g(tn + θnh, z(tn + θnh)) + g(tn, z(tn + θnh))]

≤ en(1 + Lh) + h2L1 + hd∞(g(tn, z(tn)), g(tn, z(tn + θnh)))

+hd∞(g(tn, z(tn + θnh)), g(tn + θnh, z(tn + θnh)))

≤ en(1 + Lh) + h2L1 + hLd∞(z(tn), z(tn + θnh)) + L3θnh
2

≤ en(1 + Lh) + h2(L1 + L2). (29)

From lemma (3.11), we obtain

eN ≤ (L1 + L2)h
eLb − 1

L
+ eLbe0. (30)

This converges to zero as h and e0 → 0, so the numerical solution converges to the
solution of (26). Sufficiently of the condition g(t, y) = f(t, y) follows immediately.
If, on the other hand, we have convergence, then z(t), the solution of (26), is

identical to y(t), the solution of y
′
(t) = f(t, y(t)). Suppose also that f and g

are different at some point (tα, yα). If we consider the initial fuzzy value problem
starting from (tα, yα), we have
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y
′
(tα) = f(tα, y(tα)) 6= g(tα, y(tα)) = g(tα, z(tα)) = z

′
(tα),

leading to a contradiction. Now, let the numerical solution is (ii)-differentiable and
it satisfies

yn+1 = yn 	 (−1)hφ(tn, yn, h). (31)

By the mean value theorem, we have

z(tn+1) = z(tn)	 (−1)hg(tn + θnh, z(tn + θnh)), 0 < θn < 1. (32)
therefore,

d∞(yn+1, z(tn+1)) = d∞( yn 	 (−1)hφ(tn, yn, h),

z(tn)	 (−1)hg(tn + θnh, z(tn + θnh))). (33)

Denoting en = d∞(yn, z(tn)) and by using lemma (3.5), we have

en+1 ≤ en + hd∞(φ(tn, yn, h), g(tn + θnh, z(tn + θnh)))

≤ en(1 + Lh) + h2(L1 + L2) (34)

and the remainder of proof is similar to the previous case. �

Lemma 3.13. For arbitrary u ∈ c[0, 1], if au	 bu exists, then we have

au	 bu = (a− b)u, ∀a, b ∈ R & a > b > 0

Proof.

d∞(au	 bu, (a− b)u) = sup{dH((au	 bu)[r], ((a− b)u)[r]) : 0 ≤ r ≤ 1}

= sup{max{|(au	 bu)[r]− ((a− b)u)[r]|,

|(au	 bu)[r]− ((a− b)u)[r]|} : 0 ≤ r ≤ 1}

= sup{max{|au[r]− bu[r]− (a− b)u[r]|,

|au[r]− bu[r]− (a− b)u[r]|} : 0 ≤ r ≤ 1}

= 0 (35)

�
4. Fuzzy Stiff Differential Equations

In this section, we are going to study the convergence, the consistency and the
stability of Euler method and Taylor method of order 2 for approximating the
solution of the fuzzy stiff differential equation.
The fuzzy stiff differential equations are characterized as those whose exact solution
has a term of the form e−λt, where λ is a large positive crisp number. This is usually
only a part of the solution which is called transient solution. The transient portion
of a stiff equation will rapidly decreases to zero as t increases. Let us consider the
fuzzy stiff differential equation

y
′
(t) = −λy(t), y(0) = y0, (36)

where y0 is a fuzzy number.
An exact unique fuzzy solution is given by the r−level intervals [Y r1 (t), Y r2 (t)],
0 ≤ r ≤ 1, 0 ≤ t ≤ b, where

Y r1 (t) =
yr01+y

r
02

2
e−λt +

yr01−y
r
02

2
eλt,

Y r2 (t) =
yr01+y

r
02

2
e−λt − yr01−y

r
02

2
eλt.

(37)
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By theorem (6) in [6], Y (t) = y0e
−λt is (ii)-differentiable and it is the solution of

the equation (36). obviously, it has a decreasing length of its support.
If we solve equation (36) by using the approach based on the Hukuhara differentia-
bility concept and y0 = (1, 2, 8), we get

Y (t) = (coshλt− 8sinhλt, 2coshλt− 2sinhλt, 8coshλt− sinhλt) (38)

that it has an increasing length of its support. Now let λ = 2, then

Y (t) = (cosh2t− 8sinh2t, 2cosh2t− 2sinh2t, 8cosh2t− sinh2t) (39)

and it has the representation in Figure 1.

Figure 1

First consider Euler method applied to approximate equation (36). Letting h = b
N

and tj = jh, j = 0, . . . , N , equation (3) implies that

yn+1 = yn 	 (−1)h(−λ)yn, n = 0, . . . , N − 1,

= yn 	 λhyn. (40)

If λh < 1, then by using lemma (3.13), we have

yn+1 = yn 	 λhyn, n = 0, . . . , N − 1,

= (1− λh)yn = · · · = (1− λh)n+1y0, (41)

therefore,

limn→∞ d∞(Y (tn), yn) = limn→∞ d∞(y0e−λnh, y0(1− λh)n)

= limn→∞ sup{max{|e−λnhy
0
[r]− (1− λh)ny

0
[r]|,

|e−λnhy0[r]− (1− λh)ny0[r]|} : 0 ≤ r ≤ 1}

= limn→∞ sup{max{|e−λnh − (1− λh)n||y
0
[r]|,

|e−λnh − (1− λh)n||y0[r]|} : 0 ≤ r ≤ 1} = 0, (42)

thus, if h < 1
λ , the one-step method (3) is convergent. Suppose now that initial

condition is

y(0) = y0 + δ0 = ỹ0, δ0 ∈ E.
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By considering λh < 1, at the nth step, we have

ỹn = (1− λh)nỹ0 = (1− λh)n(δ0 + y0),

therefore

d∞(yn, ỹn) = d∞((1− λh)ny0, (1− λh)nỹ0)

= d∞((1− λh)ny0, (1− λh)n(δ0 + y0))

= d∞((1− λh)ny0, (1− λh)nδ0 + (1− λh)ny0))

≤ d∞(0̃, (1− λh)nδ0)

= ‖(1− λh)nδ0‖ = (1− λh)n‖δ0‖ = Kd∞(y0, ỹ0), (43)

also, if h < 1
λ then the one-step method (3) is stable.

If suppose the Taylor method of order 2, h = b
N and tn = nh, j = 0, . . . , N ,

equation (3) implies that

yn+1 = yn 	 ((−1)h(−λ)yn + (−1)h
2

2
λ2yn), n = 0, . . . , N − 1

= yn 	 (λh− λ2h2

2
)yn. (44)

If h < 1
λ , then 0 < λh − λ2h2

2 < 1, thus the one-step method (3) is convergent,
stable and

φ(tn, yn, 0) = f(tn, yn),

therefore, it is also consistent.

5. Example

Example 5.1. Consider the following fuzzy differential equation

y
′
(t) = ty(t), y(t0) = y0, (45)

where y0 is a fuzzy number.

By Theorem (6) in [6], Y (t) = y0te
t2

2 is (i)-differentiable and it is the solution of
the equation (45).
Consider Euler method applied to approximate equation (45). Letting h = b

N and
tj = jh, j = 0, . . . , N , equation (45) implies that

yn+1 = yn + htnyn, n = 0, . . . , N − 1.

Then using Lemma (3.13), we have

yn+1 = yn + htnyn, n = 0, . . . , N − 1,

= (1 + nh2)yn
...
= (1 + h2)(1 + 2h2) · · · (1 + nh2)y0.
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Since h = b−a
n , so n→∞ equivalent to h→ 0. Therefore,

limn→∞ d∞(Y (tn), yn) = limn→∞ d∞(y0e
n2h2

2 , y0(1 + h2)(1 + 2h2) · · · (1 + nh2))

= limh→0 sup{max{|e
n2h2

2 y
0
[r]− (1 + h2)(1 + 2h2) · · · (1 + nh2)y

0
[r]|,

|e
n2h2

2 y0[r]− (1 + h2)(1 + 2h2) · · · (1 + nh2)y0[r]|} : 0 ≤ r ≤ 1}

= limh→0 sup{max{|e
n2h2

2 − (1 + h2)(1 + 2h2) · · · (1 + nh2)||y
0
[r]|,

|e
n2h2

2 − (1 + h2)(1 + 2h2) · · · (1 + nh2)||y0[r]|} : 0 ≤ r ≤ 1}

= 0

then for each sufficient small h, the one-step method (3) is convergent.
Suppose now that initial condition is

y(0) = y0 + δ0 = ỹ0, δ0 ∈ E.

At the nth step, we have

ỹn = (1 + h2)(1 + 2h2) · · · (1 + nh2)ỹ0 = (1 + h2)(1 + 2h2) · · · (1 + nh2)(δ0 + y0),

therefore

d∞(yn, ỹn)

= d∞((1 + h2)(1 + 2h2) · · · (1 + nh2)y0, (1 + h2)(1 + 2h2) · · · (1 + nh2)ỹ0)

= d∞((1 + h2)(1 + 2h2) · · · (1 + nh2)y0, (1 + h2)(1 + 2h2) · · · (1 + nh2)(δ0 + y0))

= d∞((1 + h2)(1 + 2h2) · · · (1 + nh2)y0,

(1 + h2)(1 + 2h2) · · · (1 + nh2)δ0 + (1 + h2)(1 + 2h2) · · · (1 + nh2)y0))

≤ d∞(0̃, (1 + h2)(1 + 2h2) · · · (1 + nh2)δ0)

= ‖(1 + h2)(1 + 2h2) · · · (1 + nh2)δ0‖

= (1 + h2)(1 + 2h2) · · · (1 + nh2)‖δ0‖

= Kd∞(y0, ỹ0)

then for each sufficient small h, the one-step method (3) is stable. Also, since

φ(tn, yn, 0) = f(tn, yn)

therefore, it is also consistent.

6. Conclusions

We considered fuzzy initial value problems and studied involving generalized
H-differentiability and defined local truncation error. Then we provided sufficient
conditions for convergence, consistency and stability of difference method. Finally
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we illustrated the proposed properties by remarking the fuzzy stiff differential equa-
tion.
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