چکیده
تغییر کاربری اراضی غیر شهری به اراضی شهری و ورود پسابهای خام شهری و روندی به داخل رودخانه‌ها به‌دویزه در مناطقی که رودخانه‌ها از میان شهرو هم گذرده، کیفیت آب را به‌سوی کاهش داده و کیفیت آن را نیز تحت تأثیر قرار می‌دهد و در مواردی می‌تواند شروع بیماری‌ها و یا کاهش کیفیت محصولات کشاورزی را به مهارت داشته باشد. از همین این تغییرات در مدیریت منابع آب سطحی و تأثیر شهرسازی به هر دوی پارامتر مذکور، به‌ویژه در رودخانه‌های شهری هدف اصلی این پژوهش بررسی تغییرات زمینی و مکانی کایفیت و کیفیت رواناب رودخانه با تخلیه و تأثیر توزیع شهری ارتباط بین آن است. نتایج طبقه‌بندی تصاویر ماهواره‌ای لندسی مرحله به مرحله نظرات شده با اگوریتم می‌باشد.

رشته تحلیل داده‌های دبی روزانه و پارامترهای کیفیت آب ماهانه ثبت شده در استان‌های همدان و شهری جراین (کلراته) نشان داد که شبیه‌سازی دیبی پارامترهای کیفیت آب در رودخانه شمال علی‌رغم آن‌جایی که در رودخانه اثر روندی شهری به کاهش کیفیت آب تأثیر ندارد، باعث کاهش کیفیت آب سطحی آن رودخانه و اثر افزایش سطح نفوذداهی‌ها شده است.

کلید واژگان: توزیع شهری، کیفیت جراین، کیفیت آب، سنجش از دور، شهر ارتباط
مقدمه

رشد شهید جمعیت چهار طی ۱۵۰ سال گذشته و تداوم این روند افزایشی نتایج امروز (دوم و دیگران، ۲۰۱۷، ۱۲۶) افزایش کیفیت زندگی، بهداشت و آگاهی‌های عمومی، موجب هجوم افراد بوسیله شهرها و رونق در حی صیت شهرسازی شده است؛ بهبود که در سال میلادی ۵۴ درصد جمعیت جهان در شهرها سکونت داشتند (سازمان ملل، ۲۰۱۴)، و پیش‌بینی می‌شود که در سال ۲۰۵۰ میلادی این رقم به ۷۰ درصد برسد (ریل و دیگران، ۲۰۰۹، ۵۹) بنابراین، واقع است که افزایش شهرسازی تأثیر زیادی در توسعه و گسترش شهرها خواهد داشت (شیباند و دیگران، ۲۰۱۰، ۱۳۳۳: دشر و دیگران، ۲۰۱۱). در این دوباره است که اجازه می‌دهد شده تتوسعه شهری هر کشور کمتر از ۵ درصد مساحت کل آن کشور است (ژوپو، ۲۰۱۰).

شهرسازی یا گسترش عرصه‌های شهری از دلیل مهم‌ترین نوع تغییر کاربری اراضی پویا سطح زمین است که در آن الف و پیوسته‌های منطقه‌ای ناپایدار ساخته مانند پشت بام‌ها، خیابان‌ها، پارک‌ها و جاده‌ها، جایگزین پوشش‌های طبیعی و نفوذ‌پذیر جنگلی، مرطعی، زراعی و یا بازی می‌شوند (ورری و دیگران، ۲۰۱۲). در نتیجه، مناطق شهری با ویژگی بسیار مهم متمرکز باید جمعیت افزایش و سطح غربال نفوذ مشخص می‌شود. این اثر واقعیتی شرایط، جنبه‌های مختلف اقتصادی، اجتماعی و یکی یکی از تشکیل‌دهندگان شهری هیچ راه با تأثیر قرار می‌دهد. گرچه هیدروپولیکی، از جمله مهم‌ترین اجازه رضایت‌محیطی است که از جنبه فیزیکی و بیوشیمیایی در هر میزان محلی و جهانی به شدت تحت تأثیر شهرسازی قرار می‌گیرد؛ به همین دلیل، مناطق شهری میرا بسیار پیچیده‌ای از نظر زیست محیطی، ناپایدار که رفتارهای هیدروپولیکی و هیدروپولیکی منفی نسبت به سایر مناطق غیر شهری دارند. از جمله مهم‌ترین تأثیرات شهرسازی و گسترش شهری می‌توان به تغییرات آبی و مقدار بارش و تبخیر و تعرق (ریم، ۲۰۰۹، ۴۸۵) کاوش گیاهی جیهانی و ذخیره جالبی، افزایش سطوح غربال نفوذ و کاهش میزان نفوذ آب در خاک
درصدی در حجم روان‌های رودخانه‌ای مورد مطالعه شده است. با توجه به گسترش چشم‌گیر افزایش در کثرت مناطق شهری، تأثیر بالایی مناطق شهری و توسه آن بر کمیت و کیفیت منابع آب و اهمیت شناخت این تأثیرات در برنامه‌های تولید، ضرورت انجام آن برای دانشگاه‌های بالاخوچه‌ای با استفاده از داده‌های سنجش از دور و داده‌های ثبت شده زمینه خواهد بود.

معنی‌های محدوده مورد مطالعه
 شهر اردبیل در بخش مرکزی استان اردبیل و شمال غرب ایران قرار دارد. این شهر از نظر توپوگرافی به دانه‌های شرقی کوه سیلان و حاشیه‌ی غربی دریای خزر و از نظر جغرافیایی بین ۴۳°۰۲' تا ۴۳°۰۶' و ۵۸°۰۶' تا ۵۸°۱۱' طول شرقی واقع شده است. میانگین پایداری سالانه متوسط به میلی‌متر است. بخش اعظم بارش‌ها از اواخر پاییز تا اوایل بهار بوده و عمدها به شکل شکر نازل می‌شود. رودخانه بالاخوچه از جمله مهم‌ترین رودخانه‌های دامنه استان است که از حداکثر دامنه‌های جنوبی سیلان و دامنه‌های غربی کوههای پروزی برخاسته می‌گردد. این رودخانه در مسیر خود از راهیزه‌ای سهیل‌کن در جنوب غربی اردبیل را می‌گذرد و در دو نشانه‌ای خاکی بامیه تخلیه می‌شود. دریاچه خورخوی از مخزن سد بامیه در مسیر خود از سه‌هزار متری، در مخزن سد انجراف می‌آمیزد. در فصل ۱۰ میلی‌متری شهر اردبیل تخلیه شده و جرانی خروجی از آن به دو بخش تقسیم می‌شود. بخش اول وارد کانال آبایر و زهکش بل‌الباس دریاچه شورابیل شده و بخش دوم از ایستگاه هیدرومتری بلوار کشته، اراضی زراعی اردبیل را سر بار کرد و از جنوب شرقی وارد شهر اردبیل می‌شود. این رودخانه تقسیمی از وسط شهر اردبیل عبره کرده و علوا برحسب اجسام طبیعی شهر، مخلوط آب پذیرند برای دیگر توجهی سیلتنای و کوپیستالی‌ها (۲۰۱۵) به برسی تأثیرات توسه شهری بر روان‌های رودخانه‌ای متعدد مطالعه شده است. با توجه به گسترش چشم‌گیر افزایش در کثرت مناطق شهری، تأثیر بالایی مناطق شهری و توسه آن بر کمیت و کیفیت منابع آب و اهمیت شناخت این تأثیرات در برنامه‌های تولیدی شهری و روزهای مدیریتی منابع آب اهداف اصلی این پژوهش، برشی و تعمیم گسترش شهر اردبیل، تعیین تأثیر شهری روان‌های رودخانه‌ای بین میزان جریان آب و همچنین کیفیت آب رودخانه با بالاخوچه‌ای با استفاده از داده‌های سنجش از دور و داده‌های ثبت شده زمین‌مایه خواهد بود.

۲۴ درصدی در سال ۲۰۰۶ افزایش یافته که باعث افزایش قابل توجهی در مقدار و دبی اوج روان‌های تولیدی شده است. ولانی و دیگران (۲۰۱۴) این افزایش روهای گرمایی علت شهر ایران را در شهر لاهیجان سوار مبرپلی بررسی قرار دادند و نتایج آن در افزایش سطح غیرقابل توجه شهری افزایش قابل توجه نیز در مقایسه کل جامدات مطلق، نتیجه‌گیری کنید که موقعیت و مس و منبع روان‌های شهری ایجاد می‌شود و دریغ‌ها و موقای محدوده شهری مورد مطالعه روان‌های رودخانه تولید ایران را با استفاده از سنجش از سنجش از دور و دبی اوج روان‌های رودخانه به‌طور قابل ملاحظه‌ای افزایش یافت است. یاری (۲۰۱۶) انتخاب توسه شهر کرتاسه‌ای بر کمیت و کیفیت روان‌های تولیدی شده در سطح شهر را به‌وسیله میزان سوار مبرپلی قرار داد. نتایج نشان داده که در فاصله بین سال‌های ۱۳۳۲ تا ۱۳۶۹ با افزایش محسوس مساحت شهری، حجم روان‌های تولید شده افزایش ۱۲۶ درصدی و غلظت فلزات سنگین روان‌های شهری افزایش قابل توجهی داشته است. اقایی و دیگران (۲۰۱۲) انتخاب میزان طبقات روان‌های رودخانه بازار قزوین میزان سوار مبرپلی قرار دادند و به‌وسیله رستاکنده که افزایش مساحت شهری و فعالیت‌های انسانی با افزایش ورود افتدنها و فاضل‌ها در رودخانه باعث کاهش قابل ملاحظه کیفیت آب رودخانه در خرید نسبت به ورودی شهر شده است. آشوری و دیگران (۲۰۱۴) در پژوهشی به برسی تأثیر توسه شهر تهران بر روان‌های رودخانه در آبادان، نتایج بررسی تصور ماهوراهی در افزایش سطح افزایش ۸ درصدی در افزایش یافته که باعث افزایش سطح
فصل و در بهار و زمستان است. محدوده اصلی مورد مطالعه این پژوهش بازهای این رودخانه در حدفاصل دو ایستگاه هیدرومتری مذکور به طول 30 کیلومتر است که 10 کیلومتر آن در داخل منطقه شهری اردبیل قرار گرفته و تحت تأثیر اثرات شهری و گسترش آن است. شکل 1 نمایی از موقعیت استانی منطقه مورد مطالعه و برخی اطلاعات مربوط به نشان می‌دهد (نوبندهکا، 1394).

شکل 1. موقعیت استانی منطقه مورد مطالعه (سد انرژی پل الماس، رودخانه بالاخلچای، ایستگاههای هیدرometری ورودی و خروجی و شهر اردبیل) (منبع: نوبندهکا، 1394)

مواد و روش‌ها
الف- بررسی میزان توسعة شهری طبق آمار ایران شده به‌وسیله مرکز آمار ایران، جمعیت شهر اردبیل از حدود 418000 نفر در سرشماری سال 1385 به 428000 نفر در سال 1390 رسیده است. همچنین طبق آمار ایران شده توسط استانداری اردبیل کل مساحت زمینی که پرورانی ساخت برای آن صادر شده، در دهه‌های 1378، 1385 و 1391 به ترتیب برابر با 584425، 478979 و 301184 هکتار بهره‌برداری شده است. این افزایش به دلیل اکثر شهرهای کشور طی جنگ دهه‌ای اخیر گسترش چشم‌گیری داشته‌اند که ایجاد شهرک‌های متعدد مسکونی و

صحتی در جوامع شهری دلیلی واضح بر این ادعای

تعمین گستره شهری با استفاده از نقشه‌های شهری و صورت وجوه یا نقشه‌برداری‌های ملی و مستقیم زمینی بسیار وقت‌گیر، هزینه‌بر و برای سال‌های گذشته حتی غیرممکن خواهد بود. این در حالی است که ماهورهای سنجش از دور، طبق وسایع از داده‌های مکانی و زمینی را با هزینه بسیار کم در اختیار کاربران قرار می‌دهند و به یک ابزار پرکاربرد در شناسایی و همچنین بررسی تغییرات مکانی و زمینی عوارض سطحی و تبدیل شده‌اند. به همین دلیل، باتوجه به کارایی بالا و کاربرد گسترده تکنیک‌های سنجش از دور در بررسی عوارض مختلف سطح زمین (هرماس و دیگران، 2012: 31 و لولئ و دیگران، 2004: 351) در این
Classification

Supervised Maxlikelihood

Thematic Mapper

Enhanced Thematic Mapper Plus

GAP

Google Earth 7.0.3

ENVI 4.7
چ- بررسی کیفیت آب رودخانه
در اغلب ایستگاه‌های هیدرومتری وزارت نیرو علاوه بر اندازه‌گیری مقدار جریان رودخانه، پارامترهای شیمیایی آب نیز به صورت ماهانه اندازه‌گیری و ثبت می‌شوند؛ لذا همانند مقدار جریان، تغییرات مکانی و زمینی کیفیت شیمیایی آب رودخانه‌ها نیز قابل بررسی خواهد بود؛ از این رو، داده‌های ماهانه مربوط به کیفیت شیمیایی آب ایستگاه‌های هیدرومتری پل‌الماس و گیلان‌شهر در دوره 1391-1392 نیز از شرکت آب منطقه‌ای اردبیل تهیه شدند. از آنجا که جریان آب در ایستگاه گیلان‌شهر به صورت غیردائمی بوده و دارای نقش اکثریت از بخش‌های سال وجود داشته و به همین دلیل، داده‌های کیفیت آب شامل پارامترهای کلیسم، منیزیم، سدیم، پتاسیم، سولفات، کلرید، کربنات، بی‌کربنات، حیدرات الکتریکی و نسبت جذب سدیم برای ماههای فروردین که کمترین نقش آماری را در سال‌های

یافته‌های تحقیق
الف- یافته‌های مربوط به توسعة شهری نتایج مربوط به طبقه‌بندی تصادی ماهواره‌ای و تعمین محدوده شهر اردبیل در سال‌های 1377-76، 81-82، 86-87 و 91-92 به ترتیب مطالعات شکل‌های 4.3، 2.3 و 5 نیز انجام شد.

شكل 2 تصویر ماهواره‌ای شهر اردبیل در سال 1377 (الف) و محدوده شهری تعمین شده (ب)
(منبع: نوبیستدان، 1392)
شکل ۳. تصویر ماهواره‌ای شهر اردبیل در سال ۱۳۸۲ (الف) و محدوده شهری تعیین شده (ب) (منبع نویسندگان ۱۳۹۶)

شکل ۴. تصویر ماهواره‌ای شهر اردبیل در سال ۱۳۸۷ (الف) و محدوده شهری تعیین شده (ب) (منبع نویسندگان ۱۳۹۶)

شکل ۵. تصویر ماهواره‌ای شهر اردبیل در سال ۱۳۹۲ (الف) و محدوده شهری تعیین شده (ب) (منبع نویسندگان ۱۳۹۶)
بررسی نتایج طبقه‌بندی تصادفی ماهواره‌ای نشان داد که مساحت شهر اردبیل در سال‌های آبی ۸۲-۷۶-۷۲-۷۰ و ۸۲-۷۰ به‌ترتیب ۲۹۸۷، ۳۵۲۳، ۲۵۲۳ و ۲۸۰ و ۴۵۵۵ هکتار بوده و در فواصل صد هکتار افزایش داشته است؛ لذا در فاصله ۱۵ سالا دریافت شده است و این افزایش به‌طور عمده در یک حضور غربی شهر و به‌دست ایجاد شهرک‌های جدید مستقیم از جمله کشاورزی، کار، کارانسازی و نادیری می‌باشد.

شکل ۶: تغییرات زمانی و مکانی دریای جریان رویخته بالا/پل‌ها و تغییرات زمانی و مکانی بالا/پل‌ها از نگاه سنینوپتیک اردبیل

سینوپتیک مذکور در سال‌های آبی ۸۲-۷۶-۷۲-۷۰ و ۸۲-۲۹۸۷ و ۳۵۲۳ و ۲۵۲۳ میلی‌متر بوده و با شیب ۴/۵ در طول ۱۵ سال مورد مطالعه کامپیوتری است.

علاوه بر تغییرات زمانی، جریان رویخته دریایی حاصل از تغییرات مکانی-چشمگیری بوده و در جریان خروجی (گیلان‌د) بطور متوسط ۱/۰۱ متر مکعب در ثانیه کمتر از جریان ورودی (پل‌های سراسر) است. دیلی اصل این امر ورود به‌خشي از جریان در شبه‌های زهکشی و آب‌پای اراضی کشاورزی در مناطق مختلف از رویخته‌های قبل و بعد از محدوده شهری اردبیل است.
با بروز خشکسالی‌ها و کاهش پارک‌گی منطقه و در نتیجه افزایش نیاز آب گیاهان، میزان پرداشته‌ای از آب رودخانه در طول زمستان مورد مطالعه افزایش یافته و انتظار می‌رود که شیب کاهشی دبی جریان خروجی (گیلان‌های) بیشتر از شیب کاهشی ورودی (بل آماس) باشد. در حالی که نتایج شکل ۶ برخلاف انتظار بوده و علی‌رغم پرداشته‌ای بیشتر، شیب کاهشی جریان خروجی (۱/۱۵) کمتر از جریان ورودی (ی/۲) است، بهطوری مختلف بین متوسط دمای روزانه ورودی و خروجی از ۱۳ متر مکعب بر ثانیه در سال آبی ۱۳۸۶-۱۳۷۷ به ۸/۰ متر مکعب بر ثانیه در سال آبی ۱۳۹۲-۱۳۹۱ رسیده است. این امر مربوط به توسعه شهری و افزایش سطوح نفوذناپذیر و ورود بخش اعظم رواناب‌های تولید شده از سطوح شهری در رودخانه است. شکل ۷ نمونه تصور ورود رواناب شهری در رودخانه را نشان می‌دهد. سهم ورود فاضلاب‌های خانگی به‌دلیل وجود سیستم فاضلاب شهری بسیار ناچیز است. همچنین طرح ساماندهی بسته‌گیری از سال آبی ۱۳۸۶-۱۳۸۷ در بخش‌های مختلفی از رودخانه در داخل شهر اجرا شده، با کاهش نفوذناپذیری بستر و کناره‌ها رودخانه نش مسئولی در کاهش شیب افت جریان خروجی داشته است.

شکل ۷. تخلیه رواناب تولید شده از سطوح نفوذناپذیر شهر اردبیل در رودخانه بالوخلوی (منبع: نویسنده‌گان ۱۳۸۶)
42

بررسی تأثیر گسترش مناطق شهری بر کمیت و کیفیت آب درودخانه بالا و خلوچه‌ای اردیبهشت

شکل 8. تغییرات زمانی و مکانی مجموع آبوننده و کانیون‌های رودخانه بالا و خلوچه‌ای

شکل 9. تغییرات زمانی و مکانی هدایت الکتریکی رودخانه بالا و خلوچه‌ای

شکل 10. تغییرات زمانی و مکانی نسبت جذب سدیم رودخانه بالا و خلوچه‌ای
نتایج بررسی کیفیت آب نشان می‌دهد که کیفیت آب رودخانه مورد مطالعه همانند کمیت آن در ارای تغییرات زمانی و مکانی است. در باره زمانهای سه ساله مطالعه، کیفیت آب در استگاه‌های ورودی و خروجی شهر کامیاب بوده است؛ بهطوری که در سالهای آیی ۶۸-۷۲ و ۸۱-۸۷، ۹۱-۱۰۲ و مجموع آنها و کانون‌های آب به‌ترتیب ۶۴ و ۱۱۷/۱۲، ۱۳/۱۲، ۱۵/۱۵ میلی‌گرم در لیتر در استگاه‌های جیلان‌دشت، هندیاک کهکشیکی بی‌ترتیب برابر با ۷۸/۵۰، ۱۱۳/۴۰ و ۲۰۰/۷۰ میکروگرم بر سانتیمتر در استگاه‌های پیاز و ۸۳/۴۰ و ۱۳۶/۷۸ پیاز و ۱۲۵/۶۰ و ۱۴۱/۷۷ میکروگرم بر سانتیمتر در استگاه‌های جیلان‌دشت و پیاض است. نسبت بسیار کیفیت آب در طول ۷۰ سال مورد بررسی نشان داد که تمامی پارامترهای ضد‌فیزیکی آب از مجموع آنها و کانون‌ها، هندیاک کهکشیکی و نسبت مقدار سدیم در هر دو استگاه‌های جیلان‌دشت و جیلان‌دشت است. به‌طوری که شیب افزایش غلظت آنها و کانون‌ها، هندیاک کهکشیکی و نسبت مقدار سدیم به‌ترتیب برابر با ٢/۳۷، ٢/۳۷ و ٢/۳۷، ٢/۳۷ است. اگرچه با کاهش دما میزان غلظت‌ها و تولید آلاینده‌ها افزایش یافته است، ولی در فاصله بین نهایی و خروجی میزان آلاینده‌ها با کاهش میزان جریان در محدوده زمانی مورد مطالعه قابل توجه است.

روندخانه‌ها دارای خاصیت خودپالایی هستند؛ بنابراین، اندازه‌گیری تا کیفیت آب رودخانه در پایین دست گیلان‌دشت می‌تواند بیشتر از بالای است. اما نتایج بررسی کیفیت آب رودخانه در طول ۷۰ سال مطالعه کمیت آب رودخانه در خروجی رودخانه به‌ترتیب بیشتر از شبپ ورودی است و کاستری شهری و افزایش ورود روان‌های‌ها با غلظت بالای آلاینده‌های ناشی از فعالیت‌های مختلف انسانی و خودروها، در رودخانه دلیل مهمی بر این ادعای بوده و با
نتایج تحقیقات رن و دیگران (2002) ای پی‌رس (2009) و اسنادی ایمانی و دیگران (2012) تکنیک سنجش از دور (مطالعه موردی: جنوب شرقی عربستان) نشان داد که با استفاده از تکنیک سنجش از دور، مساحت پوشش زاینده‌رودی به‌طور کامل قابل اندازه‌گیری می‌باشد. این اطلاعات به‌طور گسترده‌ای برای تحلیل و ارزیابی فاضلاب شهری و سه سطحی، منطقه‌ای و روستایی و محوریت این اهداف، به‌طور کلی، در نمایشگاه‌های مختلف چنین این موضوعات را در نظر می‌گیرند.

نتایج و نتایج دیگر این پژوهش نشان می‌دهد که تکنیک سنجش از دور، می‌تواند به‌طور کامل فضاهای شهری و سطحی را اندازه‌گیری و تحلیل کند. این نتایج به‌طور کلی باعث می‌شود که این ابزار به‌طور کلی، بتواند در آینده به بهترین شکل راه اندازی شود.

مراجع

- ایمانی، رسول; عیالی، مهدي; والی، عباسعلی. الهی، علی (1382). بررسی نقش‌بندی کوهستانی نسبت به استفاده از تکنیک سنجش از دور (مطالعه موردی: ناحیه ایلام). مجله پژوهش‌های زمین‌شناسی، سال دوم، شماره 3، صفحات 127-128.
- آشوری، علی، محسن. (1385). بررسی آثار توسعت شهری بر فراز روناب و تغییرات در مطالعه موردی: شهر شیراز.

منابع

- ایمانی، مهدی، والی، عباسعلی. الهی، علی. (1382). بررسی نقش‌بندی کوهستانی نسبت به استفاده از تکنیک سنجش از دور (مطالعه موردی: ناحیه ایلام). مجله پژوهش‌های زمین‌شناسی، سال دوم، شماره 3، صفحات 127-128.
- آشوری، علی، محسن. (1385). بررسی آثار توسعت شهری بر فراز روناب و تغییرات در مطالعه موردی: شهر شیراز.


Rim, C.S. (2009). The effects of urbanisation, geographical and topographical conditions on
بررسی تأثیر گسترش مناطق شهری بر کشت و کیفیت آب رودخانه باتوخلورچای اردبیل