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IMPLICATIONS, COIMPLICATIONS AND LEFT

SEMI-UNINORMS ON A COMPLETE LATTICE

Y. WANG, K. M. TANG AND Z. D. WANG

Abstract. In this paper, we firstly show that the N -dual operation of the

right residual implication, which is induced by a left-conjunctive right arbi-

trary ∨-distributive left semi-uninorm, is the right residual coimplication in-
duced by its N -dual operation. As a dual result, the N -dual operation of

the right residual coimplication, which is induced by a left-disjunctive right

arbitrary ∧-distributive left semi-uninorm, is the right residual implication
induced by its N -dual operation. Then, we demonstrate that the N -dual

operations of the left semi-uninorms induced by an implication and a coim-

plication, which satisfy the neutrality principle, are the left semi-uninorms.
Finally, we reveal the relationships between conjunctive right arbitrary ∨-

distributive left semi-uninorms induced by implications and disjunctive right
arbitrary ∧-distributive left semi-uninorms induced by coimplications, where

both implications and coimplications satisfy the neutrality principle.

1. Introduction

Uninorms, introduced by Yager and Rybalov [27], and studied by Fodor et al. [9],
are special aggregation operators that have been proven useful in many fields like
fuzzy logic, expert systems, neural networks, aggregation, and fuzzy system model-
ing (see [10, 25, 26]). This kind of operation is an important generalization of both
t-norms and t-conorms and a special combination of t-norms and t-conorms. But,
there are real-life situations when truth functions cannot be associative or commuta-
tive (see [6, 7]). By throwing away the commutativity from the axioms of uninorms,
Mas et al. introduced the concepts of left and right uninorms in [15, 16], and Wang
and Fang [23, 24] studied the left and right uninorms on a complete lattice. By re-
moving the associativity and commutativity from the axioms of uninorms, Liu [13]
introduced the concept of semi-uninorms, and Su et al. [22] discussed the notion
of left and right semi-uninorms, on a complete lattice. On the other hand, it is
well known that a uninorm (semi-uninorm, left and right uninorms) U is conjunc-
tive or disjunctive whenever U(0, 1) = 0 or 1, respectively. This fact allows us to
use uninorms (semi-uninorm, left and right uninorms and so on) in defining fuzzy
implications and coimplications (see [4, 5, 13, 20]).

Constructing fuzzy connecives is an interesting topic. Recently, Jenei and Mon-
tagna [12] introduced several new types of constructions of left-continuous t-norms,
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Mas et al. [17] derived two types of implications from uninorms, Ruiz and Tor-
rens [18] investigated the residual implications and coimplications from idempotent
uninorms, Su and Liu [19] studied the characterizations of residual coimplications
of pseudo-uninorms on a complete lattice, and Su and Wang [21] discussed con-
structions of implications and coimplications on a complete lattice. In this paper,
motivated by these works, we will further focus on this issue and investigate con-
structions of implications, coimplications and left semi-uninorms on a complete
lattice.

The organization of this study is as follows. Section 2 recalls some necessary con-
cepts examples about implications, coimplications, left semi-uninorms and N -dual
operations. In Section 3, we show that the N -dual operation of the right residual
implication, which is induced by a left-conjunctive right arbitrary ∨-distributive
left semi-uninorm, is the right residual coimplication, which is induced by its N -
dual operation. As a dual result, the N -dual operation of the right residual coim-
plication, which is induced by a left-disjunctive right arbitrary ∧-distributive left
semi-uninorm, is the right residual implication, which is induced by its N -dual oper-
ation. Then, we demonstrate that the N -dual operations of the left semi-uninorms
induced by an implication and a coimplication, which satisfy the neutrality princi-
ple, are the left semi-uninorms. In Section 4, we reveal the relationships between
conjunctive right arbitrary ∨-distributive left semi-uninorms induced by implica-
tions and disjunctive right arbitrary ∧-distributive left semi-uninorms induced by
coimplications, where both implications and coimplications satisfy the neutrality
principle.

The knowledge about lattices required in this paper can be found in [11].
Throughout this paper, unless otherwise stated, L always represents any given

complete lattice with maximal element 1 and minimal element 0; J stands for any
index set.

2. Implications, Coimplications, Left Semi-uniorms and
N-dual Operations

In this section, we briefly recall some concepts and examples which will be used
in the paper.

Definition 2.1. (Baczyński and Jayaram [1], De Baets [3], De Baets and Fodor [4],
Fodor and Roubens [8]) An implication I on L is a hybrid monotonous (with non-
increasing first and non-decreasing second partial mappings) binary operation that
satisfies the boundary conditions I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0. A coimpli-
cation C on L is a hybrid monotonous binary operation that satisfies the corner
conditions C(0, 0) = C(1, 1) = 0 and C(0, 1) = 1.

An implication I (a coimplication C) is said to satisfy the neutrality principle
with respect to e (w.r.t. e, for short) if I(e, y) = y (C(e, y) = y) for any y ∈ L.

Note that for any implication I and coimplication C on L, due to the mono-
tonicity, the absorption principle holds, i.e., I(0, x) = I(x, 1) = 1 and C(x, 0) =
C(1, x) = 0 for any x ∈ L.
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Definition 2.2. (Wang and Fang [23, 24]) A binary operation U on L is called left
(right) arbitrary ∨-distributive if

U
( ∨
j∈J

xj , y
)

=
∨
j∈J

U(xj , y)
(
U
(
x,
∨
j∈J

yj
)

=
∨
j∈J

U(x, yj)
)
∀x, y, xj , yj ∈ L;

left (right) arbitrary ∧-distributive if

U
( ∧
j∈J

xj , y
)

=
∧
j∈J

U(xj , y)
(
U
(
x,
∧
j∈J

yj
)

=
∧
j∈J

U(x, yj)
)
∀x, y, xj , yj ∈ L.

If a binary operation U is left arbitrary ∨-distributive (∧-distributive) and also
right arbitrary ∨-distributive (∧-distributive), then U is said to be arbitrary ∨-
distributive (∧-distributive).

Left (right) arbitrary ∨-distributivity and left (right) arbitrary ∧-distributivity
are, respectively, called left (right) infinitely ∨-distributivity and left (right) infin-
itely ∧-distributivity in [23, 24]. But, speaking of “infinitely” distributivity is not
appropriate, since the index set J may be a finite or empty set.

Noting that the least upper bound of the empty set is 0 and the greatest lower
bound of the empty set is 1 (see [2, 11]), we have that

U(0, y) = U
( ∨
j∈∅

xj , y
)
=
∨
j∈∅

U(xj , y) = 0
(
U(x, 0) = U

(
x,
∨
j∈∅

yj
)
=
∨
j∈∅

U(x, yj) = 0
)

for any x, y ∈ L when U is left (right) arbitrary ∨-distributive and

U(1, y) = U
( ∧
j∈∅

xj , y
)
=
∧
j∈∅

U(xj , y) = 1
(
U(x, 1) = U

(
x,
∧
j∈∅

yj
)
=
∧
j∈∅

U(x, yj) = 1
)

for any x, y ∈ L when U is left (right) arbitrary ∧-distributive.
For the sake of convenience, we introduce the following symbols:
I(L) (C(L)): the set of all implications (coimplications) on L;
I∧(L) (C∨(L)): the set of all right arbitrary ∧-distributive (∨-distributive) im-

plications (coimplications) on L;
Inpe(L) (Cnpe(L)): the set of all implications (coimplications) which satisfy the

neutrality principle w.r.t. e on L;
Inpe∧ (L) (Cnpe∨ (L)): the set of all right arbitrary ∧-distributive (∨-distributive)

implications (coimplications) which satisfy the neutrality principle w.r.t. e on L.

Example 2.3. (Su and Wang [21]) Let

IW (x, y) =

{
1 if x = 0 or y = 1,
0 otherwise,

IM (x, y) =

{
0 if (x, y) = (1, 0),
1 otherwise,

CW (x, y) =

{
1 if (x, y) = (0, 1),
0 otherwise,

CM (x, y) =

{
0 if x = 1 or y = 0,
1 otherwise,

where x and y are elements of L. It is easy to see that IW and IM are, respectively,
the smallest and greatest elements of I(L) and IW is also the smallest element of
I∧(L). CW and CM are, respectively, the smallest and greatest elements of C(L)
and CM is also the largest element of C∨(L).
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Example 2.4. (Su and Wang [21]) Let L = {0, a, b, 1} be a lattice, where 0 < a < 1,
0 < b < 1, a ∧ b = 0 and a ∨ b = 1. Define two implications I1, I2 and two
coimplications C1, C2 as follows:

I1 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 0 a b 1

I2 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 0 b a 1

C1 0 a b 1
0 0 a b 1
a 0 0 0 0
b 0 0 0 0
1 0 0 0 0

C2 0 a b 1
0 0 b a 1
a 0 0 0 0
b 0 0 0 0
1 0 0 0 0

It is straightforward to verify that I1 and I2 are two right arbitrary ∧-distributive
implications, C1 and C2 are two right arbitrary ∨-distributive coimplications, I1 ∨
I2 = IM and C1 ∧ C2 = CW . But IM is not right arbitrary ∧-distributive and CW

is not right arbitrary ∨-distributive.
This example shows that I∧(L) is not a join-semilattice and C∨(L) is not a

meet-semilattice.

Definition 2.5. (Su et al. [22]) A binary operation U on L is called a left (right)
semi-uninorm if it satisfies the following two conditions:

(U1) there exists a left (right) neutral element, i. e., an element eL ∈ L (eR ∈ L)
satisfying U(eL, x) = x (U(x, eR) = x) for all x ∈ L,

(U2) U is non-decreasing in each variable.

In the sequel, we only discuss left semi-uninorms. Similar results hold for right
semi-uninorms.

For any left semi-uninorm U on L, U is said to be left-conjunctive and right-
conjunctive if U(0, 1) = 0 and U(1, 0) = 0, respectively. U is called conjunctive if
both U(0, 1) = 0 and U(1, 0) = 0 since it satisfies the classical boundary conditions
of AND. U is said to be left-disjunctive and right-disjunctive if U(1, 0) = 1 and
U(0, 1) = 1, respectively. We call U disjunctive if both U(1, 0) = 1 and U(0, 1) = 1
by a similar reason.

If a left semi-uninorm U is associative, then U is the left uninorm in [23, 24]. If
a left semi-uninorm U with the left neutral element eL has a right neutral element
eR, then eL = U(eL, eR) = eR. Let e = eL = eR. Here, U is the semi-uninorm
in [13].

Now, for the sake of convenience, we list the following symbols:
UeL
s (L): the set of all left semi-uninorms with left neutral element eL on L;
UeL
s∨ (L): the set of all right arbitrary ∨-distributive left semi-uninorms with left

neutral element eL on L;
UeL
s∧ (L): the set of all right arbitrary ∧-distributive left semi-uninorms with left

neutral element eL on L;
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UeL
cs (L): the set of all conjunctive left semi-uninorms with left neutral element

eL on L;
UeL
cs∨(L): the set of all conjunctive right arbitrary ∨-distributive left semi-uninorms

with left neutral element eL on L;
UeL
ds (L): the set of all disjunctive left semi-uninorms with left neutral element

eL on L;
UeL
ds∧(L): the set of all disjunctive right arbitrary ∧-distributive left semi-uninorms

with left neutral element eL on L.

Example 2.6. Let eL ∈ L,

UW
s (x, y) =

{
y if x ≥ eL,
0 otherwise,

UM
s (x, y) =

{
y if x ≤ eL,
1 otherwise,

UM
cs (x, y) =

 0 if x = 0 or y = 0,
y if 0 < x ≤ eL, y 6= 0,
1 otherwise,

UW
ds (x, y) =

 1 if x = 1 or y = 1,
y if eL ≤ x < 1,
0 otherwise,

where x and y are elements of L. By virtue of Example 2.5 in [22], we know that UW
s

and UM
s are, respectively, the smallest and greatest elements of UeL

s (L); UW
s is the

smallest element of UeL
s∨ (L); and UM

s is the greatest element of UeL
s∧ (L). Moreover,

it is easy to see that UM
cs is the greatest element of UeL

cs∨(L); UW
ds is the smallest

element of UeL
ds∧(L); UW

s is the smallest element of UeL
cs∨(L) when eL 6= 0; and UM

s

is the greatest element of UeL
ds∧(L) when eL 6= 1.

Definition 2.7. (Ma and Wu [14]) A mapping N : L→ L is called a negation if
(N1) N(0) = 1 and N(1) = 0,
(N2) x ≤ y, x, y ∈ L⇒ N(y) ≤ N(x).
A negation N is called strong if it is an involution, i. e., N(N(x)) = x for any

x ∈ L.

Definition 2.8. (De Baets [3]) Consider a strong negation N on L. The N -dual
operation of a binary operation A on L is the binary operation AN on L defined by

AN (x, y) = N−1
(
A
(
N(x), N(y)

))
∀x, y ∈ L.

Note that (AN )N−1 = (AN )N = A for any binary operation A on L.
Moreover, for any nonempty subfamily {Aj | j ∈ J} of LL×L, the least up-

per bound ∨j∈JAj and the greatest lower bound ∧j∈JAj of A
′

js are, respectively,
defined by( ∨

j∈J
Aj

)
(x, y) =

∨
j∈J

Aj(x, y) and
( ∧
j∈J

Aj

)
(x, y) =

∧
j∈J

Aj(x, y) ∀x, y ∈ L.

3. The Residual Implications and Coimplicatons Induced by Left
Semi-uninorms and the Left Semi-uninorms Induced by

Implications and Coimplications

Recently, De Baets and Fodor [4] investigated the residual operators of uninorms
on [0, 1], Torrens et al. [17, 18] studied the implications and coimplications derived
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from uninorms on [0, 1]. Now, we consider the residual implications and coimplica-
tions induced by left semi-uninorms on a complete lattice.

For a binary operation U on L, let

ILU (x, y) =
∨{

z ∈ L | U(z, x) ≤ y
}
, IRU (x, y) =

∨{
z ∈ L | U(x, z) ≤ y

}
∀x, y ∈ L.

Here, ILU and IRU are, respectively, called the left and right residuum of U .
When U is a left semi-uninorm on L, it is easy to see that ILU and IRU are all

non-increasing in the first variable and non-decreasing in the second one.
For any operation U on L and x, y ∈ L, it follows from Theorems 4.1 and 4.2 in

[23] that
(1) ILU (x, 1) = IRU (x, 1) = 1.
(2) x ≤ ILU

(
y, U(x, y)

)
and y ≤ IRU

(
x, U(x, y)

)
.

(3) If U(1, 0) = 0, then ILU (0, y) = 1 and if U(0, 1) = 0, then IRU (0, y) = 1.
(4) If U is a left semi-uninorm with the left neutral element eL, then IRU (eL, y) = y

for any y ∈ L.
By virtue of Theorems 3.1, 3.3 and 3.4 in [13], we see that if U is a left-conjunctive

left semi-uninorm with the left neutral element eL, then IRU is an implication which
satisfies the neutrality principle w.r.t. eL; if U is a left-conjunctive right arbitrary
∨-distributive left semi-uninorm with the left neutral element eL, then IRU is a right
arbitrary ∧-distributive implication and

IRU (x, y) = max{z ∈ L | U(x, z) ≤ y}.
Here, IRU is called the right residual implication induced by the left semi-uninorm
U .

By Theorems 4.4 and 4.5 in [23] or Theorems 3.3 and 3.4 in [13], we know that
if a binary operation U is right arbitrary ∨-distributive, then U and IRU satisfy
the generalized modus ponens (GMP) rule (see [4]) U

(
x, IRU (x, y)

)
≤ y and the

following right residual (implication) principle:

U(x, z) ≤ y ⇔ z ≤ IRU (x, y) ∀x, y, z ∈ L;

if U is left arbitrary ∨-distributive, then U and ILU satisfy GMP rule in the form
U(ILU (x, y), x) ≤ y and the following left residual (implication) principle:

U(z, x) ≤ y ⇔ z ≤ ILU (x, y) ∀x, y, z ∈ L.

Example 3.1. For some left semi-uninorms in Example 2.6, a simple computation
shows that

IRUW
s

(x, y) =

{
y if x ≥ eL,
1 otherwise,

ILUM
cs

(x, y) =

 1 if x = 0 or y = 1,
eL if 0 < x ≤ y < 1,
0 otherwise,

IRUM
cs

(x, y) =

 1 if x = 0 or y = 1,
y if 0 < x ≤ eL, y 6= 1,
0 otherwise,

When eL ∈ L \ {0}, we see that ILUM
cs

is an implication; IRUM
cs

is the smallest element

of InpeL∧ (L); and IRUW
s

is the greatest element of InpeL∧ (L).
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For a binary operation U on L, let

CL
U (x, y) =

∧{
z ∈ L | y ≤ U(z, x)

}
, CR

U (x, y) =
∧{

z ∈ L | y ≤ U(x, z)
}
∀x, y ∈ L.

Here, CL
U and CR

U are, respectively, called the left and right deresiduum of U .
For any operation U on L, it follows from Theorems 3.1 and 3.2 in [24] that
(1) CL

U (x, 0) = CR
U (x, 0) = 0 for any x ∈ L.

(2) For any x, y ∈ L, CL
U

(
y, U(x, y)

)
≤ x and CR

U

(
x, U(x, y)

)
≤ y.

(3) If U is right-disjunctive, then CL
U (1, y) = 0 and if U is left-disjunctive, then

CR
U (1, y) = 0.
(4) If U is a left semi-uninorm with the left neutral element eL, then CR

U (eL, y) =
y for any y ∈ L.

It is easy to see that CL
U and CR

U are all non-increasing in the first variable
and non-decreasing in the second one when U is a left semi-uninorm; CL

U (e, x) =
CR

U (e, x) = x for any x ∈ L when U is a semi-uninorm with the neutral element e.

Example 3.2. For some left semi-uninorms in Example 2.6, a simple computation
shows that

CR
UM

s
(x, y) =

{
y if x ≤ eL,
0 otherwise,

CL
UW

ds
(x, y) =

 0 if x = 1 or y = 0,
eL if 0 < y ≤ x < 1,
1 otherwise,

CR
UW

ds
(x, y) =

 0 if x = 1 or y = 0,
y if eL ≤ x < 1,
1 otherwise,

When eL ∈ L\{1}, we see that CL
UW

ds
is a coimplication, CR

UM
s

is the smallest element

of CnpeL∨ (L); and CR
UW

ds
is the greatest element of CnpeL∨ (L).

Theorem 3.3. If U ∈ UeL
s (L) is left-disjunctive, then CR

U ∈ C(L).

Proof. If U is a left-disjunctive left semi-uninorm with the left neutral element eL,
then CR

U is non-increasing in its first and non-decreasing in its second variable and
CR

U (1, 1) = 0. Moreover,

CR
U (0, 0) =

∧
{z ∈ L | 0 ≤ U(0, z)} = 0.

By the non-decreasingness of U , we see that

CR
U (0, 1) =

∧
{z ∈ L | U(0, z) = 1} ≥

∧
{z ∈ L | z = U(eL, z) ≥ U(0, z) = 1} = 1.

Thus, CR
U is a coimplication on L. �

Moreover, if U ∈ UeL
s∧ (L) is left-disjunctive, then it follows from Theorems 3.1

and 3.2 in [13], Theorem 3.5 in [24] and Theorem 3.3 that CR
U ∈ C∨(L) and

CR
U (x, y) = min{z ∈ L | y ≤ U(x, z)}.

Here, CR
U is called the right residual coimplication induced by the left semi-uninorm

U .
If P and Q are two propositions, then the property U(x,CR

U (x, y)) ≥ y is a
generalization of the following tautology Q⇒ (P ∨ (P : Q)) in classical logic and
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is in some sense dual to the modus ponens (see [3]). By Theorems 3.3 and 3.4
in [24], we know that U and CR

U satisfy the generalized dual modus ponens rule
and the following right residual (coimplication) principle:

y ≤ U(x, z)⇔ CR
U (x, y) ≤ z ∀x, y, z ∈ L

when U is a right arbitrary ∧-distributive left semi-uninorm on L.
The following theorem reveals the relationships between the residual implications

and the residual coimplications.

Theorem 3.4. Let U be a binary operation and N strong negation on L. Then
(1) (ILU )N = CL

UN
and (CL

U )N = ILUN
.

(2) (IRU )N = CR
UN

and (CR
U )N = IRUN

.

Proof. We only prove that statement (1) holds.
Noting that the strong negation N is a bijection, by Definition 2.8, we have that

(ILU )N (x, y) = N
(
ILU
(
N(x), N(y)

))
= N

(∨{
z ∈ L | U(z,N(x)) ≤ N(y)

})
=

∧{
N(z) ∈ L |N

(
U
(
N(N(z)), N(x)

))
≥ y
}

=
∧{

N(z) ∈ L | y ≤ UN (N(z), x)
}

=
∧{

u ∈ L | y ≤ UN (u, x)
}

= CL
UN

(x, y) ∀x, y ∈ L.

Thus, (ILU )N = CL
UN

. Moreover, (ILUN
)N = CL

(UN )N
= CL

U and so (CL
U )N = ILUN

. �

By virtue of Theorem 3.4, we see that the N -dual operation of the right residual
implication, which is induced by a left-conjunctive right arbitrary ∨-distributive left
semi-uninorm, is the right residual coimplication induced by its N -dual operation
and the N -dual operation of the right residual coimplication, which is induced by a
left-disjunctive right arbitrary ∧-distributive left semi-uninorm, is the right residual
implication induced by its N -dual operation.

Liu [13] discussed the semi-uninorms induced by implications, and Su and Wang [20]

studied the pseudo-uninorms induced by coimplications. Below, we investigate the
left semi-uninorms induced by implications and coimplications on a complete lattice.

For an implication I on L, let

UL
I (x, y) =

∧{
z ∈ L | x ≤ I(y, z)

}
, UR

I (x, y) =
∧{

z ∈ L | y ≤ I(x, z)
}
∀x, y ∈ L.

Clearly, UR
I = CR

I , UL
I (0, x) = UR

I (x, 0) = 0, UL
I (1, x) = UR

I (x, 1) for any x ∈ L.
It is easy to see that UL

I and UR
I are all non-decreasing in its each variable and

UL
I

(
I(x, y), x

)
≤ y, UR

I

(
x, I(x, y)

)
≤ y ∀x, y ∈ L,

i.e., UL
I and I, UR

I and I satisfy the GMP rule.
For a coimplication C on L, let

UL
C (x, y) =

∨{
z ∈ L | C(y, z) ≤ x

}
, UR

C (x, y) =
∨{

z ∈ L | C(x, z) ≤ y
}
∀x, y ∈ L.
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Obviously, UR
C = IRC , UL

C (1, x) = UR
C (x, 1) = 1; UL

C (0, x) = UR
C (x, 0) = ∨{z ∈

L | C(x, z) = 0} for any x ∈ L. It is also easy to see that UL
C and UR

C are all
non-decreasing in its each variable and

y ≤ UL
C

(
C(x, y), x

)
, y ≤ UR

C

(
x,C(x, y)

)
∀x, y ∈ L.

These explain that UL
C and C, UR

C and C satisfy the generalized dual modus ponens
rule.

Example 3.5. For IW , IM , CW and CM in Example 2.3, we have that

UL
IW (x, y) = UR

IW (x, y) =

{
0 if x = 0 or y = 0,
1 otherwise,

UL
IM (x, y) =

{
∧a∈L\{0}a if x > 0, y = 1,
0 otherwise,

UR
IM (x, y) =

{
∧a∈L\{0}a if x = 1, y > 0,
0 otherwise.

UL
CM

(x, y) = UR
CM

(x, y) =

{
1 if x = 1 or y = 1,
0 otherwise,

UL
CW

(x, y) =

{
∨a∈L\{1}a if x < 1, y = 0,
1 otherwise,

UR
CW

(x, y) =

{
∨a∈L\{1}a if x = 0, y < 1,
1 otherwise.

Thus, these operations induced by implications IW and IM and coimplications CW

and CM are neither left semi-uninorms nor right semi-uninorms on L.

Now, we find some conditions such that these operations induced by implications
and coimplications are left semi-uninorms.

Theorem 3.6. Let I ∈ I(L) and C ∈ C(L). If I and C satisfies the neutrality
principle w.r.t. eL, then UR

I , UR
C ∈ UeL

s (L). Moreover, if I ∈ I∧(L) and C ∈
C∨(L), then UR

I ∈ U
eL
s∨ (L) and UR

C ∈ U
eL
s∧ (L).

Here, UR
I and UR

C are called the left semi-uninorms induced by the implication
I and the coimplication C, respectively.

Proof. Assume that C ∈ C(L). Then UR
C is non-decreasing in each variable. If C

satisfies the neutrality principle w.r.t. eL, then

UR
C (eL, y) =

∨{
z ∈ L |C(eL, z) ≤ y

}
=
∨{

z ∈ L | z ≤ y
}

= y ∀y ∈ L.

So, UR
C ∈ UeL

s (L). Moreover, if C is a right arbitrary ∨-distributive, then it follows
from Theorem 5.3 in [20] that UR

C is right arbitrary ∧-distributive. Thus, UR
C ∈

UeL
s∧ (L).

Similarly, we can show that UR
I ∈ UeL

s (L) when I satisfies the neutrality principle
w.r.t. eL and UR

I ∈ U
eL
s∨ (L) when I ∈ I∧(L) satisfies the neutrality principle w.r.t.

eL. �
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When I ∈ I(L), I(0, x) = 1 for any x ∈ L and hence UL
I (1, 0) = UR

I (0, 1) = 0.
Thus, UR

I in Theorem 3.6 is the conjunctive left semi-uninorms induced by the
implication I.

When C ∈ C(L), C(1, x) = 0 for any x ∈ L and hence UL
C (0, 1) = UR

C (1, 0) = 1.
Thus, UR

C in Theorem 3.6 is the disjunctive left semi-uninorms induced by the
coimplication C.

By virtue of Theorems 4.2 and 4.3 in [13] and Theorems 5.1 and 5.2 in [20], we
know that I, UL

I and UR
I satisfy the following adjunction conditions:

x ≤ I(y, z)⇔ UL
I (x, y) ≤ z, y ≤ I(x, z)⇔ UR

I (x, y) ≤ z ∀x, y, z ∈ L

when I is a right arbitrary ∧-distributive implication on L; C, UL
C and UR

C satisfy
the following adjunction conditions:

C(y, z) ≤ x⇔ z ≤ UL
C (x, y), C(x, z) ≤ y ⇔ z ≤ UR

C (x, y) ∀x, y, z ∈ L

when C is a right arbitrary ∨-distributive coimplication on L.
The following theorem reveals the relationships between the left semi-uninorms

induced by implications and coimplications.

Theorem 3.7. Let I be an implication, C a coimplication and N a strong negation
on L. Then

(1) (UL
C )N = UL

CN
and (UL

I )N = UL
IN

.

(2) (UR
C )N = UR

CN
and (UR

I )N = UR
IN

.

Proof. We only prove that statement (1) holds.
If I is an implication and C a coimplication, then it is easy to see that IN is a

coimplication and CN an implication. By Definition 2.8, we see that

(UL
C )N (x, y) = N

(
UL
C

(
N(x), N(y)

))
= N

(∨{
z ∈ L | C

(
N(y), z

)
≤ N(x)

})
=

∧{
N(z) ∈ L | C(N(y), z) ≤ N(x)

}
=

∧{
N(z) ∈ L | N

(
C(N(y), N(N(z)))

)
≥ x

}
=

∧{
N(z) ∈ L | CN (y,N(z)) ≥ x

}
=

∧{
u ∈ L | CN (y, u) ≥ x

}
= (UL

CN
)(x, y) ∀x, y ∈ L.

Thus, (UL
C )N = UL

CN
.

We can prove in an analogous way that (UL
I )N = UL

IN
. �

By Theorems 3.6 and 3.7, we know that the N -dual operation of the left semi-
uninorm induced by an implication, which satisfies the neutrality principle w.r.t.
eL, is the left semi-uninorm induced by its N -dual operation. As a dual result,
the N -dual operation of the left semi-uninorm induced by a coimplication, which
satisfies the neutrality principle w.r.t. eL, is the left semi-uninorm induced by its
N -dual operation.
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4. The Relations Between Conjunctive Left Semi-uninorms Induced by
Implications and Disjunctive Left Semi-uninorms Induced

by Coimplications

We know that the N -dual operations of an implication and a coimplication are,
respectively, a coimplication and an implication and the N -dual operation of a left
semi-uninorm is a left semi-uninorm. By virtue of Theorem 3.4, we see that the
N -dual operations of the right residual implication and coimplication, which are in-
duced by a left semi-uninorm, are, respectively, the right residual coimplication and
implication, which are induced by its N -dual operation. By Theorem 3.7, we know
that the N -dual operations of the left semi-uninorms induced by an implication and
a coimplication, which satisfy the neutrality principle, are the left semi-uninorms.

In the final section, we reveal the relationships between conjunctive right ar-
bitrary ∨-distributive left semi-uninorms induced by implications and disjunctive
right arbitrary ∧-distributive left semi-uninorms induced by coimplications on a
complete lattice.

Theorem 4.1. (1) If U ∈ UeL
s∨ (L) is left-conjunctive, then IRU ∈ I∧(L) satisfies the

neutrality principle w.r.t. eL and UR
IR
U

= U .

(2) If U ∈ UeL
s∧ (L) is left-disjunctive, then CR

U ∈ C∨(L) satisfies the neutrality
principle w.r.t. eL and UR

CR
U

= U .

(3) If I ∈ I∧(L) satisfies the neutrality principle w.r.t. eL, then UR
I ∈ U

eL
s∨ (L)

is conjunctive and IR
UR

I
= I.

(4) If C ∈ C∨(L) satisfies the neutrality principle w.r.t. eL, then UR
C ∈ U

eL
s∧ (L)

is disjunctive and CR
UR

C
= C.

Proof. We only prove that statements (1) and (3) hold.
(1) If U is a left-conjunctive right arbitrary ∨-distributive left semi-uninorm,

then IRU ∈ I∧(L) satisfies the neutrality principle w.r.t. eL by Theorem 3.1 in [13]
and Theorem 4.6 in [23]. Moreover, it follows from the right residual (implication)
principle that

UR
IR
U

(x, y) =
∧
{z ∈ L | y ≤ IRU (x, z)} =

∧
{z ∈ L | U(x, y) ≤ z} = U(x, y) ∀x, y ∈ L.

Thus, UR
IR
U

= U .

(3) If I ∈ I∧(L) satisfies the neutrality principle w.r.t. eL, then UR
I is a conjunc-

tive right arbitrary ∨-distributive left semi-uninorm by Theorem 3.6. Moreover, it
follows from the adjunction condition that

IRUR
I

(x, y) =
∨
{z ∈ L | UR

I (x, z) ≤ y} =
∨
{z ∈ L | z ≤ I(x, y)} = I(x, y) ∀x, y ∈ L.

Therefore, IR
UR

I
= I. �

Example 4.2. Let L = [0, 1],

U(x, y) =


1
4xy if y = 0 or x < 1

2 ,
y if x = 1

2 ,
1 otherwise.
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Then, U ∈ U
1
2
s∨([0, 1]) is left-conjunctive and

IRU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y} =


1 if x = 0 or y = 1,

min{1, 4y
x } if 0 < x < 1

2 ,
y if x = 1

2 ,
0 otherwise.

Thus, IRU ∈ I∧([0, 1]) satisfies the neutrality principle w.r.t. 1
2 and

UR
IR
U

(x, y) = inf{z ∈ [0, 1] | y ≤ IRU (x, z)} =


1
4xy if y = 0 or x < 1

2 ,
y if x = 1

2 ,
1 otherwise,

i.e., UR
IR
U

= U .

Theorem 4.3. (1) If eL 6= 0, then UeL
cs∨(L) is a complete lattice with the smallest

element UW
s and greatest element UM

cs .
(2) If eL 6= 1, then UeL

ds∧(L) is a complete lattice with the smallest element UW
ds

and greatest element UM
s .

(3) If eL 6= 0, then InpeL∧ (L) is a complete lattice with the smallest element IRUM
cs

and greatest element IRUW
s

.

(4) If eL 6= 1, then CnpeL∨ (L) is a complete lattice with the smallest element CR
UM

s

and greatest element CR
UW

ds
.

Proof. We only prove that statements (1) and (3) hold.
(1) Suppose that Uj ∈ UeL

cs∨(L) (j ∈ J) and J 6= ∅. Clearly,
∨

j∈J Uj ∈ UeL
cs (L).

Moreover, for any index set K and any x, yk ∈ L (k ∈ K), we have that( ∨
j∈J

Uj

)(
x,
∨
k∈K

yk
)

=
∨
j∈J

Uj

(
x,
∨
k∈K

yk
)

=
∨
j∈J

∨
k∈K

Uj(x, yk)

=
∨
k∈K

∨
j∈J

Uj(x, yk) =
∨
k∈K

( ∨
j∈J

Uj(x, yk)
)

=
∨
k∈K

(
(
∨
j∈J

Uj)(x, yk)
)
.

Hence,
∨

j∈J Uj ∈ UeL
cs∨(L). By virtue of Theorem 4.2 in [2] and Example 2.6, we

see that UeL
cs∨(L) is a complete lattice with the smallest element UW

s and greatest
element UM

cs when eL 6= 0.
(3) Assume that eL 6= 0, Ij ∈ InpeL∧ (L) (j ∈ J), and J 6= ∅. Clearly,

∧
j∈J Ij ∈

InpeL(L). Moreover, for any index set K and any x, yk ∈ L (k ∈ K), we see that( ∧
j∈J

Ij
)(
x,
∧
k∈K

yk
)

=
∧
j∈J

Ij
(
x,
∧
k∈K

yk
)

=
∧
j∈J

∧
k∈K

Ij(x, yk)

=
∧
k∈K

∧
j∈J

Ij(x, yk) =
∧
k∈K

( ∧
j∈J

Ij(x, yk)
)

=
∧
k∈K

(
(
∧
j∈J

Ij)(x, yk)
)
.

Hence,
∧

j∈J Ij ∈ InpeL∧ (L). By virtue of Theorem 4.2 in [2] and Example 3.1,

we know that InpeL∧ (L) is a complete lattice with the smallest element IRUM
cs

and

greatest element IRUW
s

. �
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Define two mappings ϕ1 : UeL
cs∨(L)→ InpeL∧ (L) and ϕ2 : UeL

ds∧(L)→ CnpeL∨ (L) as
follows:

ϕ1(U) = IRU ∀U ∈ UeL
cs∨(L), ϕ2(U) = CR

U ∀U ∈ U
eL
ds∧(L).

Then it follows from Theorem 4.1 that ϕ1 and ϕ2 are all invertible,

ϕ−11 (I) = UR
I ∀I ∈ I

npeL
∧ (L), ϕ−12 (C) = UR

C ∀C ∈ C
npeL
∨ (L).

Moreover, we have the following theorem.

Theorem 4.4. (1) (UeL
cs∨(L),∨) is order-reversing isomorphic to (InpeL∧ (L),∧).

(2) (UeL
ds∧(L),∧) is order-reversing isomorphic to (CnpeL∨ (L),∨).

(3) (UeL
cs∨(L),∨) is order-reversing isomorphic to (UN(eL)

ds∧ (L),∧).

(4) (InpeL∧ (L),∧) is order-reversing isomorphic to (CnpN(eL)
∨ (L),∨).

Proof. (1) If U1, U2 ∈ UeL
cs∨(L), then it is easy to see that U1 ∨ U2 ∈ UeL

cs∨(L).
Moreover, it follows from the right residual (implication) principle that

IR(U1∨U2)
(x, y) =

∨
{z ∈ L | (U1 ∨ U2)(x, z) ≤ y}

=
∨
{z ∈ L | U1(x, z) ∨ U2(x, z) ≤ y}

=
∨
{z ∈ L | U1(x, z) ≤ y, U2(x, z) ≤ y}

=
∨
{z ∈ L | z ≤ IRU1

(x, y), z ≤ IRU2
(x, y)}

=
∨
{z ∈ L | z ≤ IRU1

(x, y) ∧ IRU2
(x, y)}

=
(
IRU1
∧ IRU2

)
(x, y) ∀x, y ∈ L,

i.e., ϕ1(U1 ∨U2) = ϕ1(U1)∧ϕ1(U2). Thus, ϕ1 is an order-reversing isomorphism of
(UeL

cs∨(L),∨) onto (InpeL∧ (L),∧).
(2) If U1, U2 ∈ UeL

ds∧(L), then U1 ∧ U2 ∈ UeL
ds∧(L). Moreover, it follows from the

right residual (coimplication) principle that

CR
(U1∧U2)

(x, y) =
∧
{z ∈ L | y ≤ (U1 ∧ U2)(x, z)}

=
∧
{z ∈ L | y ≤ U1(x, z) ∧ U2(x, z)}

=
∧
{z ∈ L | y ≤ U1(x, z), y ≤ U2(x, z)}

=
∧
{z ∈ L | CR

U1
(x, y) ≤ z, CR

U2
(x, y) ≤ z}

=
∧
{z ∈ L | CR

U1
(x, y) ∨ CR

U2
(x, y) ≤ z}

=
(
CR

U1
∨ CR

U2

)
(x, y) ∀x, y ∈ L,

i.e., ϕ2(U1 ∧ U2) = ϕ2(U1) ∨ ϕ2(U2). So, ϕ2 is an order-reversing isomorphism of
(UeL

ds∧(L),∧) onto (CnpeL∨ (L),∨).

(3) Define f : UeL
cs∨(L)→ UN(eL)

ds∧ (L) as follows: f(U) = UN ∀U ∈ UeL
cs∨(L).
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(i) If U ∈ UeL
cs∨(L), then UN is a right arbitrary ∧-distributive left semi-uninorm

with the left neutral element N(eL). Noting that U is a conjunctive left semi-
uninorm, we have that

UN (1, 0) = N−1
(
U(N(1), (N(0))

)
= N−1

(
U(0, 1)

)
= N−1(0) = 1,

UN (0, 1) = N−1
(
U(N(0), (N(1))

)
= N−1

(
U(1, 0)

)
= N−1(0) = 1.

Thus, UN ∈ UN(eL)
ds∧ (L) and so f is a morphism of UeL

cs∨(L) into UN(eL)
ds∧ (L).

(ii) If U1, U2 ∈ UeL
cs∨(L) and f(U1) = f(U2), then

(U1)N = (U2)N , U1 = ((U1)N )N = ((U2)N )N = U2.

Moreover, for any U ∈ UN(eL)
ds∧ (L), we have that UN ∈ UeL

cs∨(L) and f(UN ) =
(UN )N = U . Thus, f is a bijection.

(iii) If U1, U2 ∈ UeL
cs∨(L), then

f(U1 ∨ U2) = (U1 ∨ U2)N = (U1)N ∧ (U2)N = f(U1) ∧ f(U2).

Therefore, f is an order-inversing isomorphism of (UeL
cs∨(L),∨) onto (UN(eL)

ds∧ (L),∧).

(4) Define g : InpeL∧ (L) → CnpN(eL)
∨ (L) as follows: g(I) = IN ∀I ∈ InpeL∧ (L). If

I ∈ InpeL∧ (L), then IN ∈ C∨(L) and

IN
(
N(eL), x)

)
= N−1

(
I
(
N(N(eL)), N(x)

))
= N−1

(
I(eL, N(x)

)
= N−1

(
N(x)

)
= x ∀x ∈ L.

Thus, IN ∈ CnpN(eL)
∨ (L) and g is a morphism of InpeL∧ (L) into CnpN(eL)

∨ (L). More-
over, by the proof of statement (3), we see that g is an order-inversing isomorphism

of (InpeL∧ (L),∧) onto (CnpN(eL)
∨ (L),∨). �

By Theorems 4.1, 4.3 and 4.4, we can get the relational graph as follows:

B
B
BBN

InpeL∧ (L)

�
�
��

UeL
cs∨(L)

�
�
��
B
B
BBM

-

�

B
B
BBN

CnpN(eL)
∨ (L)

�
�
��

UN(eL)
ds∧ (L)

�
�
��
B
B
BBM

ϕ1 ϕ−11 ϕ−12ϕ2

N -dual

N -dual

�

-

5. Conclusions and Future Works

In this paper, we have discussed the residual implications and coimplications
induced by left semi-uninorms and the left semi-uninorms induced by implications
and coimplications. We have shown that the N -dual operations of the right resid-
ual implication and coimplication, which are induced by a left semi-uninorm, are,
respectively, the right residual coimplication and implication, which are induced by
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its N -dual operation; demonstrated that the N -dual operations of the left semi-
uninorms induced by an implication and a coimplication, which satisfy the neu-
trality principle, are all left semi-uninorms; and revealed the relationships between
conjunctive right arbitrary ∨-distributive left semi-uninorms induced by implica-
tion and disjunctive right arbitrary ∧-distributive left semi-uninorms induced by
coimplication, where both implications and coimplications satisfy the neutrality
principle.

In forthcoming papers, we will further investigate the constructions of left (right)
semi-uninorms, implications and coimplications on a complete lattice.
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