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QUANTALE-VALUED GAUGE SPACES

G. JÄGER AND W. YAO

Abstract. We introduce a quantale-valued generalization of approach spaces

in terms of quantale-valued gauges. The resulting category is shown to be
topological and to possess an initially dense object. Moreover we show that

the category of quantale-valued approach spaces defined recently in terms of

quantale-valued closures is a coreflective subcategory of our category and, for
certain choices of the quantale, is even isomorphic to our category. Finally,

the category of quantale-valued metric spaces is shown to be coreflectively

embedded in our category.

1. Introduction

Approach spaces, introduced in [11, 12, 13], form a common supercategory of
topological and metric spaces. Recently, a probabilistic generalization was consid-
ered [9]. In a recent paper, from the view point of monoidal topology [6] the defini-
tions of an approach space and of a probabilistic approach space were generalized to
the quantale-valued case by defining them with the help of quantale-valued closure
operators [10]. Choosing L = [0,∞] with the opposite order and extended addition
as quantale operation, one recovers Lowen’s approach spaces. If one chooses as
quantale the set of distance distribution functions L = ∆+ with a triangle function
induced by a left-continuous t-norm as quantale operation, then probabilistic ap-
proach spaces are recovered. In [10, 9] furthermore these quantale-valued approach
spaces were characterized by certain quantale-valued convergence structures, see
also [8].

Classically, there are many different but equivalent ways of defining an approach
space. One definition in terms of gauges is of particular interest. Such a gauge
is an ideal of quasi-metrics that satisfies a so-called local saturation condition.
In this paper, after collecting the lattice background and definitions and results
about L-approach spaces and L-metric spaces in the next two sections, in section
4 we generalize this definition, by considering L-gauges, i.e. filters of L-metrics
that satisfy a suitable generalization of the saturation condition. We show that
the resulting category of L-gauge spaces is topological and has an initially dense
object. Furthermore in section 5, following the classical lines of proof, we show that
the category of L-approach spaces [9] is isomorphic to a coreflective subcategory
of the category of L-gauge spaces. We give a condition on the quantale L which
guarantees that both categories are isomorphic and show with two examples that
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we cannot omit this condition. In particular, we show that in the probabilistic case,
probabilistic approach spaces and probabilistic gauge spaces are not the same. In
the final section 6 we show that the category of L-metric spaces can naturally be
embedded into our category as a coreflective subcategory.

2. Preliminaries

We consider in this paper completely distributive lattices, i.e. complete lattices
L that satisfy the following distributive laws.

(CD1)
∨
j∈J

∧
i∈Ij

αji

 =
∧

f∈
∏
j∈J Ij

∨
j∈J

αjf(j)

 ,

(CD2)
∧
j∈J

∨
i∈Ij

αji

 =
∨

f∈
∏
j∈J Ij

∧
j∈J

αjf(j)

 .

We assume that L is non-trivial in the sense that > 6= ⊥ for the top element >
and the bottom element ⊥. It is well known that, in any complete lattice L, (CD1)
and (CD2) are equivalent. In any complete lattice L we can define the well-below
relation α � β, α is well-below β, if for all subsets D ⊆ L such that β ≤

∨
D

there is δ ∈ D such that α ≤ δ. Then α ≤ β whenever α � β and α �
∨
j∈J βj

iff α � βi for some i ∈ J . A complete lattice is completely distributive if and only
if we have α =

∨
{β : β � α} for any α ∈ L, see e.g. Theorem 7.2.3 in [1].

Similarly, we can define the well-above relation, β is well-above α, α ≺ β if for all
subsets D ⊆ L such that

∧
D ≤ α there is δ ∈ D with δ ≤ β. Then α ≺ β implies

α ≤ β and
∧
j∈J βj ≺ α iff βj ≺ α for some j ∈ J . L is completely distributive iff

α =
∧
{β ∈ L : α ≺ β} for any α ∈ L. Clearly, in a complete lattice L we have

α� β iff β ≺op α in the opposite order. For more results on lattices we refer to [4].
The triple (L,≤, ∗), where (L,≤) is a complete lattice, is called a quantale if

(L, ∗) is a semigroup, and ∗ is distributive over arbitrary joins, i.e.

(
∨
j∈J

αj) ∗ β =
∨
j∈J

(αj ∗ β) and β ∗ (
∨
j∈J

αj) =
∨
j∈J

(β ∗ αj).

A quantale (L,≤, ∗) is called commutative if (L, ∗) is a commutative semigroup and
it is called integral if the top element of L acts as the unit, i.e. if α ∗> = >∗α = α
for all α ∈ L. In any such quantale we can define an implication α → β =

∨
{γ ∈

L : α ∗ γ ≤ β}. Then α ∗ β ≤ γ iff α ≤ β → γ. We give a list of properties of the
implication.

Lemma 2.1. [7] Let (L,≤, ∗) be an integral and commutative quantale and let
α, β, γ, βj ∈ L (j ∈ J).

(1) If α ≤ β then α→ γ ≥ β → γ and γ → α ≤ γ → β;
(2) α ≤ (α→ β)→ β;
(3) α→ (

∧
j∈J βj) =

∧
j∈J(α→ βj);

(4) (
∨
j∈J βj)→ α =

∧
j∈J(βj → α).
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Example 2.2. A triangular norm or t-norm is a binary operation ∗ on the unit
interval [0, 1] which is associative, commutative, non-decreasing in each argument
and which has 1 as the unit. The triple ([0, 1],≤, ∗) can be considered as a quantale
if the t-norm is left-continuous. The three most commonly used (left-continuous)
t-norms are:

• the minimum t-norm: α ∗ β = α ∧ β,
• the product t-norm: α ∗ β = α · β,
• the Lukasiewicz t-norm: α ∗ β = (α+ β − 1) ∨ 0.

Example 2.3. The interval [0,∞] with the opposite order and addition as the
quantale operation α ∗ β = α + β (extended by α + ∞ = ∞ + a = ∞ for all
α, β ∈ [0,∞]) is a quantale, see e.g. [3]. In this quantale we have α→ β = (β−α)∨0.
Furthermore

∨
j∈J(αj → β) = (

∧
j∈J αj)→ β for all αj , β ∈ L.

Example 2.4. A function ϕ : [0,∞] −→ [0, 1], which is non-decreasing, left-
continuous on (0,∞) in the sense that ϕ(x) =

∨
{ϕ(y) : y < x} for all x ∈ (0,∞),

and satisfies ϕ(0) = 0 and ϕ(∞) = 1 is called a distance distribution function [17].
The set of all distance distribution functions is denoted by ∆+. For example, for
each 0 ≤ a <∞ the functions

εa(x) =

{
0 if 0 ≤ x ≤ a
1 if a < x ≤ ∞ and ε∞(x) =

{
0 if 0 ≤ x <∞
1 if x =∞

are in ∆+. The set ∆+ is ordered pointwise, i.e. for ϕ,ψ ∈ ∆+ we define ϕ ≤ ψ if
for all x ≥ 0 we have ϕ(x) ≤ ψ(x). The bottom element of ∆+ is ε∞ and the top
element is ε0 and the set ∆+ with this order then becomes a complete lattice. We
note that

∧
i∈I ϕi is in general not the pointwise infimum. It is shown in [3] that

this lattice is completely distributive.
A binary operation, ∗ : ∆+ × ∆+ −→ ∆+, which is commutative, associative,

non-decreasing in each place and that satisfies the boundary condition ϕ ∗ ε0 = ϕ
for all ϕ ∈ ∆+, is called a triangle function [15, 16, 17]. A triangle function is called
sup-continuous [17], if (

∨
i∈I ϕi) ∗ ψ =

∨
i∈I(ϕi ∗ ψ) for all ϕi, ψ ∈ ∆+, (i ∈ I), i.e.

if (∆+,≤, ∗) is a quantale.
We will later use the triangle function τ∗ induced by a t-norm ∗, defined by

τ∗(ϕ,ψ)(x) =
∨
u+v=x ϕ(u) ∗ ψ(v) for all x ∈ [0,∞], see [17].

Example 2.5. A frame is a quantale with ∗ = ∧.

Example 2.6. A commutative and integral quantale (L,≤, ∗) which satisfies (α→
β) → β = α ∨ β for all α, β ∈ L is a complete MV-algebra [7]. In a complete
MV-algebra we have the properties

∧
j∈J(α ∗ βj) = α ∗

∧
j∈J βj and

∨
j∈J(αj →

β) = (
∧
j∈J αj)→ β for all αj , β ∈ L.

A value quantale [3] is a commutative and integral quantale (L,≤, ∗) with an
underlying completely distributive lattice (L,≤) such that ⊥ � > and α ∨ β � >
whenever α, β � >. Examples for value quantales are ([0,∞],≥,+) or (∆+,≤, ∗)
with a sup-continuous triangle function, see [3]. It should be noted that Flagg [3]
uses the opposite order. The following result is shown in [3].
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Lemma 2.7. [3] Let (L,≤, ∗) be a value quantale. If α � >, then there is β � >
such that α� β ∗ β.

We will later need the following condition.

Definition 2.8. A quantale (L,≤, ∗) satisfies the condition (I) if

(I) for all ⊥ ≺ β and all γ �> we have β 6≤ γ ∗ β.

Lemma 2.9. If the quantale (L,≤, ∗) is integral and satisfies the strong cancella-
tion law

(SCL) for all γ, α ∈ L,⊥ ≺ β : γ ∗ β ≤ α ∗ β implies γ ≤ α
and if > 6�> then the condition (I) is satisfied.

Proof. Let ⊥ ≺ β and γ � >. If we assume β = > ∗ β ≤ γ ∗ β, then γ = >, a
contradiction. �

Example 2.10. (1) The two-point chain L = {0, 1} does not satisfy the con-
dition (I) as 1 � 1.

(2) Let L = [0,∞] with the opposite order and extended addition as quantale
operation. Then the strong cancellation law is valid and hence L satisfies
the condition (I).

(3) Let L = [0, 1] and multiplication as quantale operation. Then the strong
cancellation law is satisfied and hence L satisfies the condition (I).

(4) A frame (L,≤,∧) does in general not satisfy (I). If α ≥ β, then β = α ∧ β.
(5) The 4-element Boolean algebra {⊥, α, β,>} with α∧ β = ⊥ and α∨ β = >

satisfies (I), as α, β 6≤ α ∧ β, but does not satisfy the strong cancellation
law since α ∧ β ≤ β ∧ β but α 6≤ β.

(6) In an MV-algebra (L,≤, ∗) we have β ≤ α ∗ β iff β ∧ (α→ ⊥) = ⊥. Hence
an MV-algebra satifies (I) if and only if β ∧ (α→ ⊥) 6= ⊥ whenever α 6�>
and ⊥ 6≺ β. In particular, if L has no zero-divisors for ∧, then (L,≤, ∗)
satisfies (I).

(7) As a final example we consider the lattice ∆+. For 0 < δ <∞ and 0 < ε ≤ 1
we define fδε ∈ ∆+ by

fδε(x) =

 0 if 0 ≤ x ≤ δ
ε if δ < x <∞
1 if x =∞.

The following Lemma is then not difficult to show.

Lemma 2.11. (1) fδε ≤ fδ′ε′ ⇐⇒ δ′ ≤ δ, ε ≤ ε′;
(2) fδε � fδ′ε′ ⇐⇒ δ′ < δ, ε < ε′;
(3) fδε � ϕ ⇐⇒ ε < ϕ(δ);
(4) ϕ =

∨
{fδε : fδε � ϕ} for all ϕ ∈ ∆+;

(5) If ϕ� ε0 then there is ε < 1 such that ϕ ≤ fδε.

As a consequence, we can show the following result.

Lemma 2.12. Let ∗ be a t-norm on [0, 1] that satisfies the property (I), i.e. 0 < β
and ε < 1 implies ε ∗ β < β. Then (∆+,≤, τ∗) satisfies the condition (I).
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Proof. We first note that in ∆+ we have ε∞ 6≺ ε∞, because
∧
{εa : a > 0} = ε∞

but there is no a > 0 such that εa = ε∞. Let now ε∞ ≺ ψ, then there is x ∈ [0,∞)
such that ψ(x) > 0. If furthermore ϕ � ε0, then there is ε < 1 such that ϕ ≤ fδε.
Hence we conclude

τ∗(ϕ,ψ)(x) =
∨
u

ϕ(u) ∗ ψ(x− u) ≤
∨
u

fδε(u) ∗ ψ(x− u)

=
∨
u>δ

ε ∗ ψ(x− u) = ε ∗
∨
u>δ

ψ(x− u) ≤ ε ∗ ψ(x).

So if ψ ≤ τ∗(ϕ,ψ), then ψ(x) ≤ ε ∗ ψ(x), a contradiction. �

We will consider in this paper only commutative, integral quantales (L,≤, ∗)
with completely distributive underlying lattices.

We assume some familiarity with category theory and refer to the textbooks [2]
and [14] for more details and notation. A construct is a category C with a faithful
functor U : C −→ SET , from C to the category of sets. We always consider a
construct as a category whose objects are structured sets (S, ξ) and morphisms are
suitable mappings between the underlying sets. A construct is called topological
if it allows initial constructions, i.e. if for every source (fi : S −→ (Si, ξi))i∈I
there is a unique structure ξ on S, such that a mapping g : (T, η) −→ (S, ξ) is a
morphism if and only if for each i ∈ I the composition fi ◦ g : (T, η) −→ (Si, ξi) is
a morphism. We call such a source an initial source. An object (S, ξ) in a category
C is called initially dense in C if for any object (T, η) in C there is an initial source
(fi : (T, η) −→ (S, ξ))i∈I .

3. L-approach Spaces and L-metric Spaces

In the sequel, let L = (L,≤, ∗) be a commutative and integral quantale, where
(L,≤) is completely distributive. For a set X we denote its power set by P (X).

Definition 3.1. [10] An L-approach space is a pair (X, c) of a set and a closure
operator c : P (X) −→ LX satisfying, for all x ∈ X, A,B,Aj ⊆ X (j ∈ J), the
axioms
(LC1) c({x})(x) = >;

(LC2)
(∧

y∈B
∨
j∈J c(Aj)(y)

)
∗ c(B)(x) ≤ c(

⋃
j∈J Aj)(x);

(LC3) c(∅)(x) = ⊥;
(LC4) c(A ∪B) = c(A) ∨ c(B).

A mapping f : (X, c) −→ (X ′, c′) between two L-approach spaces is called an
L-approach morphism if c(A)(x) ≤ c′(f(A))(f(x)) for all x ∈ X and all A ⊆ X.
The category with objects the L-approach spaces and morphisms the L-approach
morphisms is denoted by L-AP .

Clearly, a closure operator c : P (X) −→ LX can equivalently be described by an
L-valued point-set distance function δ : X×P (X) −→ L, writing δ(x,A) = c(A)(x).
With this in mind, we can give the following characterization, which is more closely
related to Lowen’s original definition [11].
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Lemma 3.2. A pair (X, δ) with a set X and an L-distance δ : X ×P (X) −→ L is
an L-approach space if, for all x ∈ X, A,B ⊆ X, the following axioms are satisfied.
(LD1) δ(x, {x}) = >;
(LD2) δ(x, ∅) = ⊥;
(LD3) δ(x,A) ∨ δ(x,B) = δ(x,A ∪B) for all A,B ⊆ X;

(LD4) δ(x,A) ≥ δ(x,Aα) ∗ α for all α ∈ L, where A
α

= {x ∈ X : δ(x,A) ≥ α}.
A mapping f : (X, δ) −→ (X ′, δ′) is an L-approach morphism if and only if
δ(x,A) ≤ δ′(f(x), f(A)) for all x ∈ X,A ⊆ X.

Proof. We need only show that (LD4) and (LC2) are equivalent. Let first (LD4)

be satisfied. We define α =
∧
y∈B

∨
j∈J δ(y,Aj) and show that B ⊆

⋃
j∈J Aj

α
. For

y ∈ B we have, as a consequence of (LD3),
∨
j∈J δ(y,Aj) ≤ δ(y,

⋃
j∈J Aj) and hence

also α =
∧
z∈B

∨
j∈J δ(z,Aj) ≤ δ(y,

⋃
j∈J Aj). Hence y ∈

⋃
j∈J Aj

α
. We conclude

α ∗ δ(x,B) ≤ α ∗ δ(x,
⋃
j∈J Aj

α
) ≤ δ(x,

⋃
j∈J Aj) by (LD4), which is (LC2).

The converse follows taking Aj = A and B = A
α

. Then
∧
y∈B δ(y,A) ≥ α and

α ∗ δ(x,Aα) ≤ (
∧
y∈B δ(y,A)) ∗ δ(x,B) ≤ δ(x,A). �

We give a further characterization of (LD4).

Lemma 3.3. Let (X, δ) ∈ |L-AP |. Then (LD4) is equivalent to
(LD4’) δ(x,B) ∗

∧
b∈B δ(b, A) ≤ δ(x,A) for all A,B ⊆ X and all x ∈ X.

Proof. Let first (LD4) be true. We define α =
∨
{γ ∈ L : B ⊆ Aγ}. Then x ∈ Aα

iff δ(x,A) ≥ γ for all γ ∈ L such that B ⊆ A
γ
, i.e. iff x ∈

⋂
γ:B⊆Aγ A

γ ⊇ B.

Moreover, we have B ⊆ A
γ

iff
∧
b∈B δ(b, A) ≥ γ. Hence α =

∨
{γ ∈ L : γ ≤∧

b∈B δ(b, A)} =
∧
b∈B δ(b, A) and we conclude from (LD4) δ(x,A) ≥ δ(x,Aα)∗α ≥

δ(x,B) ∗
∧
b∈B δ(b, A). For the converse, we take B = A

α
. Then

∧
b∈B δ(b, A) ≥ α

and we conclude δ(x,A) ≥
∧
b∈B δ(b, A)∗δ(x,B) ≥ α∗δ(x,Aα), which is (LD4). �

Definition 3.4. An L-metric space is a pair (X, d) of a set X and an L-metric
d : X ×X −→ L which satisfies the following properties.
(LM1) d(x, x) = > for all x ∈ X (reflexivity), and
(LM2) d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X(transitivity).
A mapping between two L-metric spaces, f : (X, dX) −→ (Y, dY ) is called an
L-metric morphism if dX(x1, x2) ≤ dY (f(x1), f(x2)) for all x1, x2 ∈ X.

We denote the category of L-metric spaces with L-metric morphisms by L-MET .
We further denote the fibre over X in L-MET by L-MET (X). We note that for
dj ∈ L-MET (X) (j ∈ J), we have that the pointwise infimum

∧
j∈J dj ∈ L-

MET (X). As also there is a largest L-metric on X, namely d(x, y) = > for all
x, y ∈ X, the set L-MET (X) is a complete lattice.

In case L = {0, 1}, an L-metric space is a preordered set. If L = [0,∞] with
the opposite order and extended addition as quantale operation, an L-metric space
is a quasimetric space. If L = ∆+ and ∗ is a sup-continuous triangle function, an
L-metric space is a probabilistic quasimetric space, see [3].
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For a value quantale (L,≤, ∗), L-metric spaces were introduced under the name
continuity spaces and L-metric morphisms were called nonexpansive, a name which
has its justification if one uses the opposite order, in [3]. Often, L-metric spaces are
called L-categories, e.g. [6, 19], or L-preordered sets, see e.g. [18]. Our main exam-
ples being quasimetric spaces and probabilistic (quasi-)metric spaces and because
we generalize approach spaces, the theory of which has a strong metrical flavour,
we prefer to use the term L-metric space.

Example 3.5. An integral quantale (L,≤, ∗) becomes an L-metric space if we
define, for α ∈ L, dα(x, y) = (α ∧ x) → (α ∧ y), (x, y ∈ L). In fact, dα(x, x) =
(α ∧ x) → (α ∧ x) = > and dα(x, y) ∗ dα(y, z) = ((α ∧ x) → (α ∧ y)) ∗ ((α ∧ y) →
(α ∧ z)) ≤ (α ∧ x)→ (α ∧ z) = dα(x, z).

Lemma 3.6. Let X be a set and let (X ′, d′) be an L-metric space and let f : X −→
X ′. Define df (x, y) = d′(f(x), f(y)) for all x, y ∈ X, i.e. df = d′ ◦ (f × f). Then
(X, df ) is an L-metric space.

Proof. The proof is straightforward and left for the reader. �

We note that for f : X −→ X ′ and g : X ′ −→ X ′′ and (X ′′, d′′) an L-metric
space, we have dg◦f = (dg)f .

An L-distance δ : X×P (X) −→ L generates in a natural way an L-metric. This
L-metric will be useful later.

Lemma 3.7. Let δ : X × P (X) −→ L be an L-distance and let Z ⊆ X. Then
dZ(x, y) = δ(y, Z)→ δ(x, Z) is an L-metric.

Furthermore, if L satisfies (
∧
j∈J αj) → β =

∨
j∈J(αj → β) for all αj , β ∈ L

(j ∈ J), then for any A ⊆ X we have δ(x,A) ≤
∨
a∈A dZ(x, a).

Proof. We have dZ(x, x) = δ(x, Z)→ δ(x, Z) = > and d(x, y)∗d(y, z) = (δ(y, Z)→
δ(x, Z)) ∗ (δ(z, Z) → δ(y, Z)) ≤ δ(z, Z) → δ(x, Z) = dZ(x, z). Hence d is an L-
metric on X. Furthermore, from Lemma 3.3 we obtain δ(x,A) ∗

∧
a∈A δ(a, Z) ≤

δ(x, Z). Using the condition in the lemma, we obtain δ(x,A) ≤
(∧

a∈A δ(a, Z)
)
→

δ(x, Z) =
∨
a∈A (δ(a, Z)→ δ(x, Z)) =

∨
a∈A dZ(x, a). �

We have noted above that e.g. the interval [0,∞] with the opposite order and
extended addition as quantale operation, as well as complete MV-algebras satisfy
the condition stated in the lemma.

Finally we are showing that the category L-MET can nicely be embedded into
the category L-AP .

Theorem 3.8. L-MET can be embedded into L-AP as a coreflective subcategory.

Proof. Let (X, d) be an L-metric space. We define for x ∈ X and A ⊆ X

δd(x,A) =
∨
a∈A

d(x, a).

Then (X, δd) is an L-approach space. (LD1), (LD2) and (LD3) are easy and

left for the reader. We only provide a proof for (LD4). If y ∈ A
α

, then α ≤
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δd(y,A) =
∨
a∈A d(y, a). Hence α ∗ δd(x,Aα) = α ∗

∨
y∈Aα d(x, y) ≤

∨
a∈A d(y, a) ∗∨

y∈Aα d(x, y) =
∨
y∈Aα

∨
a∈A d(x, y) ∗ d(y, a) ≤

∨
y∈Aα

∨
a∈A d(x, a) = δd(x,A).

Furthermore, let (X, dX), (Y, dY ) ∈ |L-MET | and let f : X −→ Y . Then
f : (X, dX) −→ (Y, dY ) is an L-metric morphism if and only if f : (X, δdX ) −→
(Y, δdY ) is an L-approach morphism. If f : (X, dX) −→ (Y, dY ) is an L-metric
morphism, then for x ∈ X and A ⊆ X we have δdX (x,A) =

∨
a∈A dX(x,A) ≤∨

a∈A dY (f(x), f(a)) ≤
∨
b∈f(A) dY (f(x), b) = δdY (f(x), f(A)). Hence f : (X, δdX )

−→ (Y, δdY ) is an L-approach morphism. The converse is obvious using d(x, y) =
δd(x, {y}).

We note that if (X, d) 6= (X, d′) for two L-metric spaces, then there are x, y ∈ X
such that δd(x, {y}) = d(x, y) 6= d′(x, y) = δd

′
(x, {y}), i.e. (X, δd) 6= (X, δd

′
). Thus

the functor

G :

 L-MET −→ L-AP
(X, d) 7−→ (X, δd)
f 7−→ f

is an embedding functor.
We define now for (X, δ) ∈ |L-AP |

dδ(x, y) = δ(x, {y}).
Then (X, dδ) ∈ |L-MET |. We have dδ(x, x) = δ(x, {x}) = > for all x ∈ X.

Furthermore, by (LD1), we have y ∈ {y}
δ(y,{z})

and hence with (LD4) dδ(x, y) ∗
dδ(y, z) ≤ δ(x, {y}

δ(y,{z})
) ∗ δ(y, {z}) ≤ δ(x, {y}) = dδ(x, y).

It is furthermore not difficult to see that for an L-approach morphism f :
(X, δX) −→ (Y, δY ), f : (X, dδX ) −→ (X, dδY ) is an L-metric morphism and that

we have for (X, δ) ∈ |L-AP | that δ(d
δ)(x,A) ≤ δ(x,A) and for (X, d) ∈ |L-MET |

we have d(δ
d)(x, y) = d(x, y). From this the claim follows. �

4. The Category of L-gauge Spaces

Definition 4.1. Let H ⊆ L-MET (X) and d ∈ L-MET (X).

(1) d is called locally supported by H if for all x ∈ X, α � >, ⊥ ≺ ω there is
eα,ωx ∈ H such that eα,ωx (x, ·) ∗ α ≤ d(x, ·) ∨ ω;

(2) H is called locally directed if for all finite subsets H0 ⊆ H,
∧
d∈H0

d is locally
supported by H;

(3) H is called locally saturated if for d ∈ L-MET (X) we have d ∈ H whenever
d is locally supported by H.

(4) The set

Ĥ = {d ∈ L-MET (X) : d is locally supported by H}
is called the local saturation of H.

For L = [0,∞] and the opposite order, Lowen [11, 12, 13] calls a locally support-
ing family (locally) dominating. This expression seems not suitable in our setting
why we chose a new term.

We give two characterizations of local support.



Quantale-valued Gauge Spaces 111

Lemma 4.2. Let H ⊆ L-MET (X) and d ∈ L-MET (X). Then d is locally sup-
ported by H iff

∧
x∈X

∧
⊥≺ω

∨
e∈H (e(x, ·)→ (d(x, ·) ∨ ω)) = >.

Proof. Let first d be locally supported by H. Then for x ∈ X, α � > and ⊥ ≺ ω
there is e ∈ H such that α ≤ e(x, ·) → (d(x, ·) ∨ ω). Hence, for all α � > we
have α ≤

∧
x∈X

∧
⊥≺ω

∨
e∈H(e(x, ·) → (d(x, ·) ∨ ω)) from which > =

∨
α�> α ≤∧

x∈X
∧
⊥≺ω

∨
e∈H(e(x, ·)→ (d(x, ·) ∨ ω)) follows.

Conversely, let
∧
x∈X

∧
⊥≺ω

∨
e∈H(e(x, ·) → (d(x, ·) ∨ ω)) = >. Then for all

x ∈ X and all ⊥ ≺ ω we have
∨
e∈H(e(x, ·)→ (d(x, ·)∨ ω)) = >. Hence, for α�>,

there is e ∈ H such that e(x, ·)→ (d(x, ·)∨ ω) ≥ α and this means that d is locally
supported by H. �

For the following characterization, we define for a subset H ⊂ L-MET (X) and
for x ∈ X, the set H(x) = {f : X −→ L : f(·) ≥ d(x, ·), d ∈ H}. The idea of this
result goes back to [5].

Lemma 4.3. Let H ⊆ L-MET (X) and d ∈ L-MET (X). Then d is locally sup-
ported by H iff

∧
x∈X

∧
⊥≺ω

∨
{α ∈ L : α→ (d(x, ·) ∨ ω) ∈ H(x)} = >.

Proof. Let first d be locally supported byH. Then for all x ∈ X, α�>, ⊥ ≺ ω there
is e ∈ H such that e(x, ·) ≤ α → (d(x, ·) ∨ ω). Therefore α → (d(x, ·) ∨ ω) ∈ H(x)
and we have

∨
{α ∈ L : α → (d(x, ·) ∨ ω) ∈ H(x)} ≥

∨
α�> α = >. This is true

for all x ∈ X and all ⊥ ≺ ω and hence
∧
x∈X

∧
⊥≺ω

∨
{α ∈ L : α→ (d(x, ·)∨ω) ∈

H(x)} = >.
Let now the condition of the Lemma be true. Then for all x ∈ X and all ⊥ ≺ ω

we have
∨
{α ∈ L : α→ (d(x, ·)∨ω) ∈ H(x)} = >. Let α�>. Then there is β ≥ α

such that β → (d(x, ·)∨ω) ∈ H(x) and because the set H(x) is an upper set, we find
α→ (d(x, ·)∨ω) ∈ H(x). Hence there is e ∈ H such that e(x, ·) ≤ α→ (d(x, ·)∨ω)
and this means that d is locally supported by H. �

Corollary 4.4. Let H ⊆ L-MET (X). The following are equivalent.

(1) H is locally saturated.
(2)

∧
x∈X

∧
⊥≺ω

∨
e∈H (e(x, ·)→ (d(x, ·) ∨ ω)) = > implies d ∈ H.

(3)
∧
x∈X

∧
⊥≺ω

∨
{α ∈ L : α→ (d(x, ·) ∨ ω) ∈ H(x)} = > implies d ∈ H.

Definition 4.5. Let X be a set. G ⊆ L-MET (X) is called an L-gauge if G is a
filter in L-MET (X) and G is locally saturated. In particular, an L-gauge satisfies
the axioms

(LG1) G 6= ∅;
(LG2) d ∈ G and d ≤ e implies e ∈ G;
(LG3) d, e ∈ G implies d ∧ e ∈ G;
(LG4) G is locally saturated.

The pair (X,G) is then called an L-gauge space. A mapping between two L-gauge
spaces, f : (X,G) −→ (X ′,G′) is called an L-gauge morphism if d′ ◦ (f × f) ∈ G
whenever d′ ∈ G′.

It is not difficult to show that the class of L-gauge spaces together with the
L-gauge morphisms forms a category which shall be denoted L-GS.
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In case that the quantale L is the interval [0,∞] with the opposite order and
extended addition as quantale operation, then [0,∞]-gauge spaces are approach
spaces defined by means of gauges, [13]. We will study the relation of L-approach
spaces and L-gauge spaces in the next section.

Definition 4.6. Let (X,G) ∈ |L-GS| and let H ⊆ L-MET (X). If Ĥ = G, then H
is called a basis for the gauge G.

Proposition 4.7. Let L be a value quantale. If ∅ 6= H ⊆ L-MET (X) is locally

directed, then G = Ĥ is a gauge with H as basis.

Proof. Clearly H ⊆ Ĥ, so that G 6= ∅. If d ∈ Ĥ and d ≤ e, then for x ∈ X,
α�>, ⊥ ≺ ω, there is eα,ωx ∈ H such that eα,ωx (x, ·) ∗ α ≤ d(x, ·) ∨ ω ≤ e(x, ·) ∨ ω.

Hence e is locally supported by H and e ∈ Ĥ. Let now d, e ∈ Ĥ. We fix x ∈ X,
α � > and ⊥ ≺ ω. Then there is β � ⊥ such that α � β ∗ β and hence there are
dβ,ωx , eβ,ωx ∈ H such that dβ,ωx (x, ·) ∗ β ≤ d(x, ·) ∨ ω and eβ,ωx (x, ·) ∗ β ≤ e(x, ·) ∨ ω.
By local directedness then dβ,ωx ∧ eβ,ωx is locally supported by H and hence there is
fβ,ωx ∈ H such that fβ,ωx (x, ·) ∗ β ≤ dβ,ωx ∧ eβ,ωx (x, ·) ∨ ω. We conclude

fβ,ωx (x, ·) ∗ α ≤ fβ,ωx (x, ·) ∗ β ∗ β ≤ ((dβ,ωx ∧ eβ,ωx (x, ·)) ∗ β) ∨ (ω ∨ β)

≤ ((dβ,ω(x, ·) ∗ β) ∧ (eβ,ωx (x·) ∗ β)) ∨ ω
≤ ((d(x, ·) ∨ ω) ∧ (e(x, ·) ∨ ω) ∨ ω ≤ (d ∧ e)(x, ·) ∨ ω.

Hence d ∧ e is locally supported by H, i.e. d ∧ e ∈ Ĥ and Ĥ is a filter.

We finally show that Ĥ is locally saturated. Let d ∈ L-MET (X) be locally

supported by Ĥ and let x ∈ X, α � > and ⊥ ≺ ω. There is β � > such that

α� β ∗ β and hence there is eβ,ωx ∈ Ĥ such that eβ,ωx (x, ·) ∗ β ≤ d(x, ·)∨ ω. As eβ,ωx
is locally supported by H there is fβ,ωx ∈ H such that fβ,ωx (x, ·) ∗ β ≤ eβ,ωx (x, ·)∨ ω
and we conclude

fβ,ω(x, ·)∗α ≤ fβ,ωx (x·)∗β∗β ≤ (eβ,ωx (x, ·)∨ω)∗β ≤ (eβ,ωx (x, ·)∗β)∨ω ≤ d(x, ·)∨ω.

Hence d is locally supported by H, i.e. d ∈ Ĥ. �

Theorem 4.8. Let L be a value quantale. Then the category L-GS is topological
over SET .

Proof. Let fj : X −→ Xj (j ∈ J) be a family of mappings and let (Xj ,Gj) ∈ |L-
GS|. We define

H = {
∧
j∈K

dj ◦ (fj × fj) : K ⊆ J finite , dj ∈ Gj∀j ∈ J}.

Clearly H is locally directed, as finite meets of members of H belong to H. For

dj ∈ Gj we have dj◦(fj×fj) ∈ H ⊆ Ĥ, so that all mappings fj : (X, Ĥ) 7−→ (Xj ,Gj)
are L-gauge morphisms. Let now (Y,K) ∈ |L-GS| and g : Y −→ X be a mapping
such that all fj ◦ g : (Y,K) −→ (Xj ,Gj) are L-gauge morphisms. Then for dj ∈ Gj
we know that (dfj )g = d ◦ (fj × fj) ◦ (g× g) ∈ K. Let now d ∈ Ĥ. Then for α�>,
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⊥ ≺ ω we have for all x ∈ X that

(
∧
j∈K

dj ◦ (fj × fj)(x, ·)) ∗ α ≤ d(x, ·) ∨ ω,

with some finite set K ⊆ J . We conclude for all y1, y2 ∈ Y that

dg(y1, y2) ∨ ω = d(g(y1), g(y2)) ∨ ω ≥ (
∧
j∈K

dj ◦ (fj × fj) ◦ (g × g)(y1, y2)) ∗ α.

As K is a filter, we conclude
∧
j∈K dj ◦ (fj × fj) ◦ (g × g) ∈ K. Hence dg is locally

supported by K and therefore dg ∈ K and g : (Y,K) −→ (X, Ĥ) is an L-gauge
morphism. �

We finally show that L-GS has an initially dense object. To this end, we consider
the L-metrics dα : L × L −→ L introduced in Example 3.4 and note that HL =

{
∧
α∈K dα : K ⊆ L finite} is locally directed. Hence (L, ĤL) is an object in L-GS.

Theorem 4.9. Let (L,≤, ∗) be a value quantale and let (X,G) ∈ |L-GS|. Then(
dx(·) = d(x, ·) : (X,G) −→ (L, ĤL)

)
x∈X,d∈G

is an initial source.

Proof. We show that G is the initial gauge for the source. To this end, we first show

that all dx are L-gauge morphisms. Let x ∈ X and d ∈ G. Let further e ∈ ĤL.
Then e is locally supported by HL, i.e. for all η ∈ L, α � > and ⊥ ≺ ω there is a
finite set K = Kη,α,ω ⊆ L and dγ ∈ HL (γ ∈ K) such that∧

γ∈K
dγ(η, ·) ∗ α ≤ e(η, ·) ∨ ω.

We show that e ◦ (dx× dx) ∈ G. For any κ ∈ L we have (κ∧ d(x1, x2)) ∗ d(x1, x2) ≤
κ ∧ (d(x, x1) ∗ d(x1, x2)) ≤ κ ∧ d(x, x2). Hence d(x1, x2) ≤ (κ ∧ d(x, x1)) → (κ ∧
d(x, x2)) = dκ(d(x, x1), d(x, x2)).

Let now x1 ∈ X, α�> and ⊥ ≺ ω. Then for all x2 ∈ X we have

e ◦ (dx × dx)(x1, x2) ∨ ω = e(d(x, x1), d(x, x2)) ∨ ω

≥
∧

γ∈Kd(x,x1),α,ω

dγ(η, ·) ∗ α ≥ d(x1, x2) ∗ α.

Hence e ◦ (dx × dx) is locally supported by G, and therefore belongs to G. Con-
sequently, if we denote the initial L-gauge on X for the source (dx : X −→
(L, ĤL))x∈X,d∈G by Ginit, we have Ginit ⊆ G.

Let now d ∈ G. We show that d is locally supported by Ginit. Let x ∈ X, α�>
and ⊥ ≺ ω. Then for x2 ∈ X we have

(dα ◦ (dx × dx)(x, x2)) ∗ α = ((α ∧ d(x, x))→ (α ∧ d(x, x2))) ∗ α
= α ∗ (α→ (α ∧ d(x, x2))) ≤ α ∧ d(x, x2) ≤ d(x, x2) ∨ ω.

Hence we have seen dα ◦ (dx×dx)(x, ·)∗α ≤ d(x, ·)∨ω and because dα ◦ (dx×dx) ∈
Ginit we conclude that d is locally supported by Ginit and therefore d ∈ Ginit and
the proof is complete. �
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5. L-approach Spaces as L-gauge Spaces

Proposition 5.1. Let (X, δ) ∈ |L-AP |. Define

Gδ = {d ∈ L-MET (X) : ∀A ⊆ X,x ∈ X : δ(x,A) ≤
∨
a∈A

d(x, a)}.

Then (X,Gδ) ∈ |L-GS|.

Proof. We first show that Gδ is a filter in L-MET (X). Clearly d ≡ > ∈ Gδ and
hence G 6= ∅. If d ∈ Gδ and e ≥ d then

∨
a∈A e(x, a) ≥

∨
a∈A d(x, a) ≥ δ(x,A)

and hence e ∈ Gδ. Finally, let d1, d2 ∈ Gδ. We denote G0 = {d1, d2}. By complete
distributivity then ∨

a∈A

∧
d∈G0

d(x, a) =
∧
ϕ∈GA0

∨
a∈A

ϕ(a)(x, a).

Now, for ϕ ∈ GA0 we have∨
a∈A

ϕ(a)(x, a) =
∨
d∈G0

∨
a∈ϕ←(d)

d(x, a) ≥
∨
d∈G0

δ(x, ϕ←(d))

= δ(x,
⋃
d∈G0

ϕ←(d)) = δ(x,A).

Hence
∨
a∈A

∧
d∈G0 d(x, a) =

∧
ϕ∈GA0

∨
a∈A ϕ(a)(x, a) ≥ δ(x,A) and therefore d1 ∧

d2 ∈ Gδ.
Next we show that Gδ is locally saturated. Let d ∈ L-MET (X), let x ∈ X,

α�> and ⊥ ≺ ω and let dα,ωx ∈ Gδ such that dα,ωx (x, ·) ∗ α ≤ d(x, ·) ∨ ω. Then∨
a∈A

d(x, a) ∨ ω ≥
∨
a∈A

dα,ωx (x, a) ∗ α ≥ δ(x,A) ∗ α

and hence

ω ∨
∨
a∈A

d(x, a) ≥
∨
α�>

δ(x,A) ∗ α = δ(x,A) ∗
∨
α�>

α = δ(x,A) ∗ > = δ(x,A).

This is true for any ⊥ ≺ ω and we conclude

δ(x,A) ≤
∧
⊥≺ω

(
ω ∨

∨
a∈A

d(x, a)

)
=

(∨
a∈A

d(x, a)

)
∨
∧
⊥≺ω

ω =
∨
a∈A

d(x, a).

Hence d ∈ Gδ and the proof is complete. �

Proposition 5.2. Let (X, δ), (X ′, δ′) ∈ |L-AP | and let f : (X, δ) −→ (X ′, δ′) be

an L-approach morphism. Then f : (X,Gδ) −→ (X ′,Gδ′) is an L-gauge morphism.

Proof. Let d′ ∈ Gδ′ . Then for all A′ ⊆ X ′ and all x′ ∈ X ′ we have δ′(x′, A′) ≤∨
a′∈A′ d

′(x′, a′). We want to show that df ∈ Gδ. Let x ∈ X and let A ⊆ X.
Then δ(x,A) ≤ δ′(f(x), f(A)) ≤

∨
a∈A d

′(f(x), f(a)) =
∨
a∈A df (x, a). Hence df ∈

Gδ. �
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Hence we can define a functor E :

 L-AP −→ L-GS
(X, δ) 7−→ (X,Gδ)
f 7−→ f

. We will show in the

sequel that in the case of a quantale that satisfies (
∧
j∈J αj)→ β =

∨
j∈J(αj → β)

for all αj , β ∈ L, this functor yields an embedding that is coreflective.

Lemma 5.3. Let L satisfy (
∧
j∈J αj) → β =

∨
j∈J(αj → β) for all αj , β ∈ L.

Then the functor E is injective on objects.

Proof. Let (X, δ), (X, δ′) ∈ |L-AP | with δ 6= δ′. Then there are x ∈ X and A ⊆ X
such that δ(x,A) 6= δ′(x,A). Without loss of generality we may assume δ(x,A) 6≤
δ′(x,A). From Lemma 3.7 we know that dA ∈ Gδ where dA is defined by dA(x, y) =

δ(y,A) → δ(x,A). Assume that dA ∈ Gδ
′
. Then δ′(x,A) ≤

∨
a∈A dA(x, a) =∨

a∈A(δ(a,A) → δ(x,A)) = δ(x,A), as for a ∈ A we have δ(a,A) = >. This is a

contradiction and hence dA /∈ Gδ′ and (X,Gδ) 6= (X,Gδ′). �

Proposition 5.4. Let (X,G) ∈ |L-GS|. If we define δG : X × P (X) −→ L by

δG(x,A) =
∧
d∈G

∨
a∈A

d(x, a),

then (X, δG) ∈ |L-AP |.

Proof. (LD1) We have δG(x, {x}) =
∧
d∈G d(x, x) = >.

(LD2) We have δG(x, ∅) =
∧
d∈G

∨
∅ = ⊥.

(LD3) Clearly δG(x,A∪B) ≥ δG(x,A)∨ δ(x,B). For the converse inequality, let
δG(x,A) ∨ δG(x,B) ≺ α. Then there are dA, dB ∈ G such that

∨
a∈A dA(x, a) ≺ α

and
∨
b∈B dB(x, b) ≺ α. As G is an L-gauge we have dA ∧ dB ∈ G and by local

saturation there is, for β � >, ⊥ ≺ ω and x ∈ X an L-metric eβ,ωx ∈ G such that
eβ,ωx (x, ·) ∗ β ≤ dA ∧ dB(x, ·) ∨ ω. Hence we conclude

δG(x,A ∪B) ∗ β =

(∧
d∈G

∨
c∈A∪B

d(x, c)

)
∗ β ≤

∧
d∈G

( ∨
c∈A∪B

d(x, c) ∗ β

)
≤

∨
c∈A∪B

eβ,ωx (x, c) ∗ β

=

(∨
a∈A

eβ,ωx (x, a) ∨
∨
b∈B

eβ,ωx (x, b)

)
∗ β

=

(∨
a∈A

eβ,ωx (x, a) ∗ β

)
∨

(∨
b∈B

eβ,ωx (x, b) ∗ β

)

≤

(∨
a∈A

dA(x, a) ∨ ω

)
∨

(∨
b∈B

dB(x, b) ∨ ω

)
≤ α ∨ ω.
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Hence we have seen that for all β�> and all ⊥ ≺ ω we have δ(x,A∪B)∗β ≤ α∨ω.
Therefore we conclude

δG(x,A ∪B) = δG(x,A ∪B) ∗
∨
β�>

β =
∨
β�>

δG(x,A ∪B) ∗ β ≤ α ∨ ω

and consequently also δG(x,A ∪B) ≤
∧
⊥≺ω(α ∨ ω) = α ∨

∧
⊥≺ω ω = α. From this

we obtain δG(x,A∪B) ≤
∧
{α ∈ L : δG(x,A)∨ δG(x,B) ≺ α} = δ(x,A)∨ δ(x,B).

(LD4) Let x ∈ X, A ⊆ X, α ∈ L and β�α. For b ∈ Aα we have
∧
d∈G

∨
a∈A d(b, a)

= δG(b, A) ≥ α. Hence for all d ∈ G there is aβ ∈ A such that d(b, aβ) � β and
we conclude d(x, aβ) ≥ d(x, b) ∗ d(b, aβ) ≥ d(x, b) ∗ β. Therefore

∨
a∈A d(x, a) ≥

d(x, b) ∗ β. This is true for any b ∈ Aβ and hence we obtain∨
a∈A

d(x, a) ≥
∨
b∈Aβ

(d(x, b) ∗ β) = (
∨
b∈Aβ

d(x, b)) ∗ β.

As β � α was arbitrary, we conclude, using A
α ⊆ Aβ ,

∨
a∈A

d(x, a) ≥
∨
β�a

(
∨
b∈Aα

d(x, b)) ∗ β

 =
∨
b∈Aα

d(x, b) ∗
∨
β�α

β = (
∨
b∈Aα

d(x, b)) ∗ α.

This yields

δG(x,A) ≥
∧
d∈G

(
∨
b∈Aα

d(x, b)) ∗ α

 ≥
∧
d∈G

(
∨
b∈Aα

d(x, b))

 ∗ α = δG(x,A
α

) ∗ α

and (LD4) is true. �

Proposition 5.5. Let (X,G), (X ′,G′) ∈ |L-GS| and let f : (X,G) −→ (X ′,G′) be

an L-gauge morphism. Then f : (X, δG) −→ (X ′, δG
′
) is an L-approach morphism.

Proof. Let x ∈ X and A ⊆ X. We have

δG
′
(f(x), f(A)) =

∧
d′∈G′

∨
a∈A

d′(f(x), f(a)) =
∧
d′∈G′

∨
a∈A

df (x, a).

As for d′ ∈ G′ we have df ∈ G we conclude

δG
′
(f(x), f(A)) ≥

∧
d∈G

∨
a∈A

d(x, a) = δG(x,A).

�

Hence we can define a functor K :

 L-GS −→ L-AP
(X,G) 7−→ (X, δG)
f 7−→ f

.

We will need the following result.

Proposition 5.6. Let L satisfy (
∧
j∈J αj)→ β =

∨
j∈J(αj → β) for all αj , β ∈ L.

Let (X, δ) ∈ |L-AP | and define Gδ as in Proposition 5.1. Then for all A ⊆ X and
all x ∈ X we have δ(x,A) =

∧
d∈Gδ

∨
a∈A d(x, a).
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Proof. For d ∈ Gδ we have
∨
a∈A d(x, a) ≥ δ(x,A) and hence

∧
d∈Gδ

∨
a∈A d(x, a) ≥

δ(x,A). For the converse inequality we make use of Lemma 3.7. Then for any
Z ⊆ X, dZ ∈ Gδ, where dZ(x, y) = δ(y, Z)→ δ(x, Z). Hence we conclude∧

d∈Gδ

∨
a∈A

d(x, a) ≤
∨
Z⊆X

∨
a∈A

dZ(x, a) =
∧
Z⊆X

∨
a∈A

(δ(a, Z)→ δ(x, Z))

≤
∨
a∈A

(δ(a,A)→ δ(x,A)) = δ(x,A)

as for a ∈ A we have by (LD1) that δ(a,A) = >. �

Corollary 5.7. Let L satisfy (
∧
j∈J αj) → β =

∨
j∈J(αj → β) for all αj , β ∈ L.

Let (X, δ) ∈ |L-AP |. Then δ(G
δ) = δ, i.e. we have K(E((X, δ))) = (X, δ).

Proposition 5.8. Let (X,G) ∈ |L-GS|. Then G ⊆ G(δG), i.e. we have E(K((X,G)))
≥ (X,G).

Proof. For d ∈ G we have δG(x,A) ≤
∨
a∈A d(x, a) and hence d ∈ G(δG). �

As a corollary, we obtain the following theorem.

Theorem 5.9. Let L satisfy (
∧
j∈J αj) → β =

∨
j∈J(αj → β) for all αj , β ∈ L.

Then the category L-AP is isomorphic to a coreflective subcategory of L-GS.

In general, G(δG) 6= G, as is shown by the following two examples.

Example 5.10. Let L = [0, 1] ∪ {⊥ = −1,> = 2} and the order inherited from
IR with ∧ = ∗ as the quantale operation. Then ⊥ ≺ ⊥ and > � >. Let further
X = (0, 1) and define, for x ∈ X, the L-metric ex : X ×X −→ L by

ex(a, b) =

{
> if a = b
x if a 6= b

.

It is easily checked that ex is an L-metric on X. Furthermore, we have for A ⊆ X
and y ∈ X ∧

x∈X

∨
a∈A

ex(y, a) =
∨
a∈A

∧
x∈X

ex(y, a).

If y ∈ A, then we have
∧
x∈X

∨
a∈A ex(y, a) ≥

∨
a∈A

∧
x∈X ex(y, a) ≥

∧
x∈X ex(y, y)

= >. If y /∈ A, then we have y 6= a for all a ∈ A and hence
∨
a∈A

∧
x∈X ex(y, a) ≤∧

x∈X
∨
a∈A ex(y, a) ≤

∧
x∈X x = 0.

We define now

H = {
∧
x∈K

ex : K ⊆ X finite }

Then H is locally directed and we denote G = Ĥ. We define d0 =
∧
x∈X ex. For

A ⊆ X and y ∈ X we have∧
d∈G

∨
a∈A

d(y, a) ≤
∧
x∈X

∨
a∈A

ex(y, a) =
∨
a∈A

∧
x∈X

ex(y, a),
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and hence d0 ∈ G(δ
G). However, d0 /∈ G. It is routine to verify that for y ∈ X,

α = > and β = ⊥ there is no finite subset K ⊆ X such that
∧
x∈K ex(y, ·) =∧

x∈K ex(y, ·) ∧ > ≤ d0(y, ·) ∨ ⊥ = d0(y, ·). Hence d0 is not locally supported by
H, i.e. d0 /∈ G. With regard to the following theorem we note that L is a linearly
ordered value quantale but does not satisfy the property (I).

Example 5.11. Let L = ∆+. For 0 ≤ α, β ≤ 1 we define the distance distribution
functions ϕαβ ∈ ∆+ by

ϕαβ(x) =


0 if 0 ≤ x < 1− α

1
2α (x+ α− 1) if 1− α < x ≤ 1
1
2β (x+ β − 1) if 1 < x ≤ 1 + β

1 if 1 + β < x

.

Furthermore, we put ϕα = ϕαα for short. Then ϕα∧ϕβ = ϕα∧β,α∨β and
∧

0<α<1 ϕα
= ϕ01. We consider now, for a set X and 0 < α < 1, the equilateral space [17]
(X, dα) with

dα(p, q) =

{
ϕα if p 6= q
ε0 if p = q

.

It is shown in [17] that for any triangle function τ , an equilateral space is a (∆+, τ)-
metric space.

For a non-empty A ⊆ X and p ∈ X we moreover have∧
0<α<1

∨
a∈A

dα(p, a) =

{
ϕ01 if p /∈ A
ε0 if p ∈ A ,

and also ∨
a∈A

∧
0<α<1

dα(p, a) =

{
ϕ01 if p /∈ A
ε0 if p ∈ A ,

and the equality
∧

0<α<1

∨
a∈A dα(p, a) =

∨
a∈A

∧
0<α<1 dα(p, a) holds trivially if

A = ∅. We define H = {
∧
α∈K dα : K ⊆ (0, 1) finite}. Then H is locally directed

and we define G = Ĥ. For A ⊆ X and p ∈ X we then have∧
d∈G

∨
a∈A

d(p, a) ≤
∧

0<α<1

∨
a∈A

dα(p, a) =
∨
a∈A

∧
0<α<1

dα(p, a),

and hence d0 =
∧

0<α<1 dα ∈ G(δ
G). However, for α = f1/2,1/2 � ε0 (see Lemma

2.11) and β = g1/4,2 where gδ,γ =

{
γ if 0 < x ≤ δ
1 if δ < x

, we have ε∞ ≺ g1/4,2 but

there is no finite subset K ⊆ (0, 1) such that( ∧
α∈K

dα(p, ·) ∧ f1/2,1/2

)
(x) ≤

(
d0(p, ·) ∨ g1/4,2

)
(x)

for all x ∈ [0,∞]. Indeed, for p 6= q we have with δ =
∧
α∈K α and γ =

∨
α∈K α

that
∧
α∈K dα(p, q) = ϕδγ and for 1 − δ/2 < x < 1 we have 1

4 < (
∧
α∈K dα(p, q) ∧

f1/2,1/2)(x) < 1
2 and (d0(p, q)∨g1/4,2)(x) = 1

4 . Therefore d0 is not locally supported
by G and hence d0 /∈ G.
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With regard to the following theorem, we note that if we choose the triangle
function induced by the product t-norm, L = ∆+ satisfies the condition (I) but is
not linearly ordered.

Under certain assumptions, however, we can guarantee that the categories L-AP
and L-GS are isomorphic.

Theorem 5.12. Let (L,≤, ∗) be a linearly ordered value quantale that satisfies the

condition (I). Let further G ⊆ L-MET (X) be an L-gauge. Then G(δG) = G.

Proof. We have seen above that G ⊆ G(δG). Now we show that G(δG) ⊆ G. Let d0 ∈
G(δG) and assume d0 /∈ G. Then d0 is not locally supported by G and hence there
is an x ∈ X, α�>, ⊥ ≺ ω such that for all e ∈ G we have e(x, ·) ∗α 6≤ d0(x, ·)∨ ω.
As L is a value quantale, there is β �> such that α� β ∗ β and hence we have for
all e ∈ G

e(x, ·) ∗ (β ∗ β) 6≤ d0(x, ·) ∨ ω.

Consider a finite subset D0 ⊆ G and define

A(D0) = {y ∈ X :
∧
d∈D0

d(x, y) ∗ β 6≤ d0(x, y) ∨ ω}.

As G is locally directed, there is e0 ∈ G such that

e0(x, y) ∗ β ≤
∧
d∈D0

d(x, y) ∨ ω.

As a consequence, if e0(x, y) ∗ (β ∗ β) 6≤ d0(x, y) ∨ ω, then
∧
d∈D0

d(x, y) ∗ β 6≤
d0(x, y) ∨ ω. For otherwise we had

e0(x, y) ∗ (β ∗ β) ≤

(( ∧
d∈D0

d(x, y)

)
∗ β

)
∨ ω ≤ d0(x, y) ∨ ω,

a contradiction. It follows that

∅ 6= {y ∈ X : e(x, y) ∗ (β ∗ β) 6≤ d0(x, y) ∨ ω} ⊆ A(D0).

Moreover we have for finite subsets D0,D1 ⊂ G that A(D0 ∪D1) ⊆ A(D0) ∩A(D1)
and hence the system {A(D0) : D0 ⊆ G finite} is a filter basis on X. We conclude,

using δ(G
(δG)) = δG ,  ∧

D0⊆G finite

δG(x,A(D0)) ∨ ω

 ∗ β
=

 ∧
D0⊆G finite

∧
e∈G

∨
a∈A(D0)

e(x, a)

 ∗ β
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≥

 ∧
D0⊆G finite

∧
e∈G

∨
a∈A(D0∪{e})

( ∧
d∈D0

(d ∧ e)(x, a)

) ∗ β
=

 ∧
D0⊆G finite

∨
a∈A(D0)

∧
d∈D0

d(x, a)

 ∗ β
=

∧
D0⊆G finite

∨
a∈A(D0)

( ∧
d∈D0

d(x, a) ∗ β

)
.

As L is linearly ordered, the last expression is

≥
∧

D0⊆G finite

∨
a∈A(D0)

(d0(x, a) ∨ ω)

≥
∧

D0⊆G finite

∧
e∈G(δG)

∨
a∈A(D0)

(e(x, a) ∨ ω)

≥
∧

D0⊆G finite

δ(G
(δG))(x,A(D0) ∨ ω ≥

∧
D0⊆G finite

δG(x,A(D0) ∨ ω.

As L satisfies the property (I), this is a contradiction and hence d0 ∈ G. �

We obtain from Corollary 5.7 and Theorem 5.12 the following result.

Theorem 5.13. Let (L,≤, ∗) be a linearly ordered value quantale that satisfies the
condition (I) and (

∧
j∈J αj) → β =

∨
j∈J(αj → β) for all αj , β ∈ L. Then the

categories L-GS and L-AP are isomorphic.

In case of L = [0,∞] and the opposite order and extended addition as quantale
operation, we see that in the case of approach spaces [11] the conditions on L are
satisfied and hence ([0,∞]-) gauges and ([0,∞]-) approach distances are equivalent
concepts. However, as can be seen with Example 5.11, probabilistic approach spaces
[9] cannot equivalently be described by ∆+-gauges.

6. L-metric Spaces as L-gauge Spaces

Theorem 6.1. The category L-MET is isomorphic to a coreflective subcategory
of L-GS.

Proof. Let (X, d) ∈ |L-MET | and define Gd = [d] = {e ∈ L-MET (X) : d ≤ e}.
As Gd = [d] is a principal filter, it is naturally locally saturated and hence (X,Gd) ∈
|L-GS|. Furthermore, let f : (X, d) −→ (X ′, d′) be an L-metric morphism and let

e′ ∈ Gd′ . Then d′ ≤ e′ and hence ef (x, y) = e′(f(x), f(y)) ≥ d′(f(x), f(y)) ≥
d(x, y). Hence ef ∈ Gd and f : (X,Gd) −→ (X ′,Gd′) is an L-gauge morphism.

Hence we can define a functor F :

 L-MET −→ L-GS
(X, d) 7−→ (X,Gd)
f 7−→ f

. This functor is

clearly injective on objects, for if we have two different L-metrics on X, we may
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assume d(x, y) 6≤ d′(x, y) for x, y ∈ X. But then d′ /∈ Gd whereas d′ ∈ Gd′ . Let
now (X,G) ∈ |L-GS| and define dG : X × X −→ L by dG(x, y) =

∧
d∈G d(x, y).

Then (X, dG) ∈ |L-MET |. For (X,G), (X ′,G′) ∈ |L-GS| and an L-gauge morphism

f : (X,G) −→ (X ′,G′) then f : (X, dG) −→ (X ′, dG
′
) is an L-metric morphism.

To see this, let x, y ∈ X. Then, because for d′ ∈ G′ we have df ∈ G, we con-

clude dG
′
(f(x), f(y)) =

∧
d′∈G′ d

′(f(x), f(y)) =
∧
d′∈G′ df (x, y) ≥

∧
d∈G d(x, y) =

dG(x, y). Hence we can define a functor H :

 L-GS −→ L-MET
(X,G) 7−→ (X, dG)
f 7−→ f

. For

(X, d) ∈ |L-MET | and x, y ∈ X we have d(G
d)(x, y) =

∧
e∈Gd e(x, y) =

∧
e≥d e(x, y)

= d(x, y). This shows d(G
d) = d, i.e. F (H((X, d))) = (X, d). For (X,G) ∈ |L-GS|

and e ∈ G we have dG(x, y) ≤ e(x, y) for all x, y ∈ X and therefore e ∈ G(dG). Hence

G ⊆ G(dG), i.e. H(F ((X,G))) ≥ (X,G). �

Lemma 6.2. Let (X, d) ∈ |L-MET |. Then Gd = Gδd , i.e. we have F = E ◦G.

Proof. We have e ∈ Gδd if and only if for all x ∈ X and all A ⊆ X we have
δd(x,A) ≤

∨
a∈A e(x, a), i.e. if and only if for all x ∈ X and all A ⊆ X we have∨

a∈A d(x, a) ≤
∨
a∈A e(x, a). Taking for A the one-point sets, we see d ≤ e, i.e.

e ∈ Gd. Conversely, if e ∈ Gd, then d ≤ e and hence δd(x,A) ≤
∨
a∈A e(x, a) for all

x ∈ X and all A ⊆ X, i.e. e ∈ G(δd). �
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