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QUANTALE-VALUED GAUGE SPACES

G. JAGER AND W. YAO

ABSTRACT. We introduce a quantale-valued generalization of approach spaces
in terms of quantale-valued gauges. The resulting category is shown to be
topological and to possess an initially dense object. Moreover we show that
the category of quantale-valued approach spaces defined recently in terms of
quantale-valued closures is a coreflective subcategory of our category and, for
certain choices of the quantale, is even isomorphic to our category. Finally,
the category of quantale-valued metric spaces is shown to be coreflectively
embedded in our category.

1. Introduction

Approach spaces, introduced in [11, 12, 13], form a common supercategory of
topological and metric spaces. Recently, a probabilistic generalization was consid-
ered [9]. In a recent paper, from the view point of monoidal topology [6] the defini-
tions of an approach space and of a probabilistic approach space were generalized to
the quantale-valued case by defining them with the help of quantale-valued closure
operators [10]. Choosing L = [0, co] with the opposite order and extended addition
as quantale operation, one recovers Lowen’s approach spaces. If one chooses as
quantale the set of distance distribution functions L = A1 with a triangle function
induced by a left-continuous t-norm as quantale operation, then probabilistic ap-
proach spaces are recovered. In [10, 9] furthermore these quantale-valued approach
spaces were characterized by certain quantale-valued convergence structures, see
also [8].

Classically, there are many different but equivalent ways of defining an approach
space. One definition in terms of gauges is of particular interest. Such a gauge
is an ideal of quasi-metrics that satisfies a so-called local saturation condition.
In this paper, after collecting the lattice background and definitions and results
about L-approach spaces and L-metric spaces in the next two sections, in section
4 we generalize this definition, by considering L-gauges, i.e. filters of L-metrics
that satisfy a suitable generalization of the saturation condition. We show that
the resulting category of L-gauge spaces is topological and has an initially dense
object. Furthermore in section 5, following the classical lines of proof, we show that
the category of L-approach spaces [9] is isomorphic to a coreflective subcategory
of the category of L-gauge spaces. We give a condition on the quantale L which
guarantees that both categories are isomorphic and show with two examples that

Received: October 2016; Revised: January 2017; Accepted: April 2017
Key words and phrases: L-gauge space, L-approach space, L-metric space, Continuity space.



104 G. Jager and W. Yao

we cannot omit this condition. In particular, we show that in the probabilistic case,
probabilistic approach spaces and probabilistic gauge spaces are not the same. In
the final section 6 we show that the category of L-metric spaces can naturally be
embedded into our category as a coreflective subcategory.

2. Preliminaries

We consider in this paper completely distributive lattices, i.e. complete lattices
L that satisfy the following distributive laws.

oy \/ | A axn A Voo

jeJ \iel; fell;es I; \deJ

cp2) A [V asn Vo Ao

jet \iel; fellje, I; \j€J

We assume that L is non-trivial in the sense that T # L for the top element T
and the bottom element L. It is well known that, in any complete lattice L, (CD1)
and (CD2) are equivalent. In any complete lattice L we can define the well-below
relation o < B, « is well-below B, if for all subsets D C L such that 8 < \/ D
there is § € D such that @ < 4. Then o < 8 whenever a < 8 and a < Vjejﬂj
iff « <1 B; for some ¢ € J. A complete lattice is completely distributive if and only
if we have o = \/{f : B < a} for any a € L, see e.g. Theorem 7.2.3 in [1].
Similarly, we can define the well-above relation, 8 is well-above a, a < [ if for all
subsets D C L such that A D < « there is § € D with § < 5. Then a < § implies
a < f and /\jEJ B; < aiff B; < « for some j € J. L is completely distributive iff
a=N{8eL : a=<p}for any a« € L. Clearly, in a complete lattice L we have
a <1 iff f <°P « in the opposite order. For more results on lattices we refer to [4].

The triple (L, <,x), where (L, <) is a complete lattice, is called a quantale if
(L, *) is a semigroup, and * is distributive over arbitrary joins, i.e.

(\/ aj)* = \/(aj*ﬁ) and ﬁ*(\/ aj) = \/(B*aj).

jeJ jeJ jeJ jeJ
A quantale (L, <, %) is called commutative if (L, ) is a commutative semigroup and
it is called integral if the top element of L acts as the unit, i.e. if axT =T xa =«
for all @ € L. In any such quantale we can define an implication a« — 8 = \/{y €
L : axy<pB} Then axf <~viff a < 8 — . We give a list of properties of the
implication.

Lemma 2.1. [7] Let (L,<,%) be an integral and commutative quantale and let
a, By, B,€L (jeld).

(1) Ifa<Bthena—~y>B—=yandy—a<vy—05;

(2) a<(a—p)—B;

B) a = (NjesBi) = Njesla = B;);

(4) (VjeJ Bj) = o= /\jeJ(/Bj —a).
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Example 2.2. A triangular norm or t-norm is a binary operation % on the unit
interval [0, 1] which is associative, commutative, non-decreasing in each argument
and which has 1 as the unit. The triple ([0, 1], <, %) can be considered as a quantale
if the t-norm is left-continuous. The three most commonly used (left-continuous)
t-norms are:

e the minimum t-norm: a* 8 =a A S,
e the product t-norm: a*x 3 =« - 3,
e the Lukasiewicz t-norm: a* 8= (a+ 5 —1) V0.

Example 2.3. The interval [0, 00] with the opposite order and addition as the
quantale operation «a * 8 = «a 4+ 8 (extended by o + 0o = 00 + a = oo for all
a, B € ]0,00]) is a quantale, see e.g. [3]. In this quantale we have « — 8 = (f—a) V0.
Furthermore \/; ;(a; = B8) = (Aje ) — B for all o, 8 € L.

Example 2.4. A function ¢ : [0,00] — [0,1], which is non-decreasing, left-
continuous on (0, 00) in the sense that ¢(x) = \/{p(y) : y <z} for all x € (0, 00),
and satisfies ¢(0) = 0 and p(c0) = 1 is called a distance distribution function [17].
The set of all distance distribution functions is denoted by A*. For example, for
each 0 < a < oo the functions

{0 ifo<z<a
() =

11 ifa<ax<oo and

eo(z) = 0 ifo<zr<o
W)=Y 1 ifz=o0

are in AT, The set AT is ordered pointwise, i.e. for v, % € A" we define ¢ < 1 if
for all x > 0 we have ¢(x) < (z). The bottom element of AT is e, and the top
element is £y and the set AT with this order then becomes a complete lattice. We
note that A\,;_; ¢; is in general not the pointwise infimum. It is shown in [3] that
this lattice is completely distributive.

A binary operation, * : AT x AT — AT which is commutative, associative,
non-decreasing in each place and that satisfies the boundary condition ¢ x g9 = ¢
for all ¢ € AT, is called a triangle function [15, 16, 17]. A triangle function is called
sup-continuous [17], if (\/;c; @i) * b = Vo (@i * ¥) for all @;,¢p € AT, (i € I), i.e.
if (AT, <, %) is a quantale.

We will later use the triangle function 7, induced by a t-norm *, defined by
7o (@ 8) () = Vi oy () 5 (v) for all 2 € [0, 00], see [17].

Example 2.5. A frame is a quantale with * = A.

Example 2.6. A commutative and integral quantale (L, <, ) which satisfies (o —
B) = B =aVvpioral a,f € L is a complete MV-algebra [7]. In a complete
MV-algebra we have the properties A\, ;(a* ;) = a* \;c;B; and V¢, (a; —
B) = (N\jes;) = B forall oy, B € L.

A walue quantale [3] is a commutative and integral quantale (L, <,*) with an
underlying completely distributive lattice (L, <) such that L < T and eV <1 T
whenever o, 3 <1 T. Examples for value quantales are ([0, 00], >,+) or (AT < %)
with a sup-continuous triangle function, see [3]. It should be noted that Flagg [3]
uses the opposite order. The following result is shown in [3].
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Lemma 2.7. [3] Let (L, <,x) be a value quantale. If a < T, then there is 3 <4 T
such that o <1 B 3.

We will later need the following condition.
Definition 2.8. A quantale (L, <, *) satisfies the condition (I) if
(I) for all L < B and all v < T we have 8 £ vx* f3.

Lemma 2.9. If the quantale (L, <,%) is integral and satisfies the strong cancella-
tion law

(SCL) for ally,a € L, L < B :v*x B < axf implies v < «
and if T LT then the condition (I) is satisfied.

Proof. Let 1. < fand v <1 T. If we assume =T x 8 < vyx*xf, then vy =T, a
contradiction. O

Example 2.10. (1) The two-point chain L = {0, 1} does not satisfy the con-
dition (I) as 1 < 1.

(2) Let L = [0, 00] with the opposite order and extended addition as quantale
operation. Then the strong cancellation law is valid and hence L satisfies
the condition (I).

(3) Let L = [0,1] and multiplication as quantale operation. Then the strong
cancellation law is satisfied and hence L satisfies the condition (I).

(4) A frame (L, <,A) does in general not satisfy (I). If & > 3, then 8 = a A 8.

(5) The 4-element Boolean algebra { L, o, 3, T} withaAf=LandaVpB=T
satisfies (I), as o, 8 £ a A B, but does not satisfy the strong cancellation
law since a A B < A B but a £ 5.

(6) In an MV-algebra (L, <,*) we have 8§ < a* fiff 6 A (e — L) = L. Hence
an MV-algebra satifies (I) if and only if 8 A (o — L) # L whenever a 4T
and L £ B. In particular, if L has no zero-divisors for A, then (L, <,x*)
satisfies (I).

(7) As afinal example we consider the lattice AT. For0 < § < coand 0 < e < 1
we define fsc € AT by

0 if 0<x<é
fseclx)=<¢ ¢ if d<z<o
1 if z=o0.
The following Lemma is then not difficult to show.

Lemma 2.11. (1) fse < fsro = & <6,e<€;
(2) foe < fsre = 0 <de<é€;
(3) f55<“)0 — €<90(6);

(4) ¢ =V{fse : foc <} for all p € AT;
(5) If p <€ then there is € < 1 such that ¢ < fs.

As a consequence, we can show the following result.

Lemma 2.12. Let x be a t-norm on [0, 1] that satisfies the property (I), i.e. 0 < 3
and € < 1 implies e x B3 < B. Then (AT, <, 7.) satisfies the condition (I).
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Proof. We first note that in AT we have e, 4 €o0, because A{eq : a > 0} = e
but there is no a > 0 such that ¢, = e,. Let now €4, < 1, then there is « € [0, 00)
such that () > 0. If furthermore ¢ < £¢, then there is € < 1 such that ¢ < fs.
Hence we conclude

el )(@) = \/so ) (o —u) \/fée )+ (w —u)
= \/e*w(m—u) = €x \/wx—u < ex ().
u>d u>4§
So if 1 < 7.(p, ), then (z) < e x1(x), a contradiction. O

We will consider in this paper only commutative, integral quantales (L, <, x)
with completely distributive underlying lattices.

We assume some familiarity with category theory and refer to the textbooks [2]
and [14] for more details and notation. A construct is a category C with a faithful
functor U : C — SET, from C to the category of sets. We always consider a
construct as a category whose objects are structured sets (9, ¢) and morphisms are
suitable mappings between the underlying sets. A construct is called topological
if it allows initial constructions, i.e. if for every source (f; : S — (5:,&))icr
there is a unique structure £ on S, such that a mapping g : (T,n) — (5,¢) is a
morphism if and only if for each i € I the composition f; o g : (T,n) — (5;,&;) is
a morphism. We call such a source an initial source. An object (5,¢) in a category
C is called initially dense in C if for any object (T',n) in C there is an initial source

(fz : (T’ 77) — (57 5))i€1~

3. L-approach Spaces and L-metric Spaces

In the sequel, let L = (L, <, *) be a commutative and integral quantale, where
(L, <) is completely distributive. For a set X we denote its power set by P(X).

Definition 3.1. [10] An L-approach space is a pair (X, c) of a set and a closure
operator ¢ : P(X) — L% satisfying, for all z € X, A,B,A; C X (j € J), the
axioms

(LCY) c({z})(z) =

(1C2) (Ayep Vies clA4)) * e(B)) < elUje s 4))(x):

(LC3) ¢(0)(z) = L;

(LC4) ¢c(AU B) = ¢(A) V ¢(B).

A mapping f : (X,c) — (X', ) between two L-approach spaces is called an
L-approach morphism if ¢(A)(z) < (f(A))(f(x)) for all x € X and all A C X.
The category with objects the L-approach spaces and morphisms the L-approach
morphisms is denoted by L-AP.

Clearly, a closure operator ¢ : P(X) — L* can equivalently be described by an
L-valued point-set distance function § : X x P(X) — L, writing 6(x, A) = ¢(A)(x).
With this in mind, we can give the following characterization, which is more closely
related to Lowen’s original definition [11].
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Lemma 3.2. A pair (X,0) with a set X and an L-distance § : X x P(X) — L is
an L-approach space if, for allx € X, A, B C X, the following axioms are satisfied.
(LD1)  b(x, {x}) = T+

(LD2)  6(x,0) = L;

(LD3)  6(x,A)V(z,B)=0(x,AUB) for all A,B C X;

(LD4)  6(x, A) > 6(z, A) x for all o € L, where A” = {z € X : §(x,A) > a}.
A mapping f : (X,0) — (X',d') is an L-approach morphism if and only if
8z, A) < (f(x), f(A)) forallz € X,AC X.

Proof. We need only show that (LD4) and (LC2) are equivalent. Let first (LD4)

be satisfied. We define « = A\ .5 V;c;0(y, A;) and show that B C (¢, Aja. For
y € B we have, as a consequence of (LD3), /. ; 8(y, 4;) < d(y, U, s 4;) and hence

also a = A\_cpV;c;0(2,4;) <6(y,U s Aj)- Hence y € UjeJAja. We conclude
axd(@,B) <axd@,U,c,A; ) < 8(x,U;cs Aj) by (LD4), which is (LC2).

The converse follows taking A; = A and B = A%, Then Nyep d(y; A) > a and
axd(r,A%) < (Ayep d(y, A)) *6(z, B) < 6(z, A). O

We give a further characterization of (LD4).

Lemma 3.3. Let (X,06) € |L-AP|. Then (LD4) is equivalent to
(LD4’)  6(x,B) * Npep (b, A) < 0(x, A) for all A,B C X and all v € X.

Proof. Let first (LD4) be true. We definea=\/{ye L : BCA'}. Then z € A"
iff 6(x, A) > ~ for all v € L such that B C ZW, ile. iff z € ﬂ,y:Bng A" O B.
Moreover, we have B C A" iff A\, 5 (b, A) > 7. Hencea = \/{y € L : v <
Nocp (b, A)} = Ay d(b, A) and we conclude from (LD4) 6(x, A) > 6(x, AM) ko >
6(z, B) * \ycp 0(b, A). For the converse, we take B = A”. Then Nocp 0(b, A) > a
and we conclude §(x, A) > A,z (b, A)x6(x, B) > axd(x, A”), which is (LD4). [

Definition 3.4. An L-metric space is a pair (X, d) of a set X and an L-metric
d: X x X — L which satisfies the following properties.

(LM1) d(z,z) =T for all z € X (reflexivity), and

(LM2) d(x,y) * d(y, z) < d(x,z2) for all z,y, 2z € X (transitivity).

A mapping between two L-metric spaces, f : (X,dx) — (Y,dy) is called an
L-metric morphism if dx (x1,22) < dy (f(x1), f(x2)) for all 1,25 € X.

We denote the category of L-metric spaces with L-metric morphisms by L-M ET.
We further denote the fibre over X in L-M ET by L-MET(X). We note that for
dj € L-MET(X) (j € J), we have that the pointwise infimum A, ,;d; € L-
MET(X). As also there is a largest L-metric on X, namely d(z,y) = T for all
x,y € X, the set L-MET(X) is a complete lattice.

In case L = {0,1}, an L-metric space is a preordered set. If L = [0, c0] with
the opposite order and extended addition as quantale operation, an L-metric space
is a quasimetric space. If L = A% and = is a sup-continuous triangle function, an
L-metric space is a probabilistic quasimetric space, see [3].
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For a value quantale (L, <, %), L-metric spaces were introduced under the name
continuity spaces and L-metric morphisms were called nonezpansive, a name which
has its justification if one uses the opposite order, in [3]. Often, L-metric spaces are
called L-categories, e.g. [6, 19], or L-preordered sets, see e.g. [18]. Our main exam-
ples being quasimetric spaces and probabilistic (quasi-)metric spaces and because
we generalize approach spaces, the theory of which has a strong metrical flavour,
we prefer to use the term L-metric space.

Example 3.5. An integral quantale (L, <,*) becomes an L-metric space if we
define, for a € L, do(z,y) = (e Az) = (@ Ay), (x,y € L). In fact, do(z,z) =
(anz) = (anz) =T and do(z,y) *do(y,2) = (A z) = (aAy))* (aAy) —
(aAhz)) <(aAz)—= (aAz)=dy(z,2).

Lemma 3.6. Let X be a set and let (X',d") be an L-metric space and let f : X —»
X'. Define d¢(z,y) = d'(f(x), f(y)) for all z,y € X, i.e. dy =d o (f x f). Then
(X,dy) is an L-metric space.

Proof. The proof is straightforward and left for the reader. O

We note that for f : X — X’ and g : X’ — X" and (X”,d”) an L-metric
space, we have dgoy = (dg) ;.

An L-distance § : X x P(X) — L generates in a natural way an L-metric. This
L-metric will be useful later.

Lemma 3.7. Let § : X X P(X) — L be an L-distance and let Z C X. Then
dz(z,y) =0(y,Z) — 6(x, Z) is an L-metric.
Furthermore, if L satisfies (\;c;05) = B = V;es(e; — B) for all o, 8 € L
(j € J), then for any A C X we have §(x, A) < \/ c4dz(z,a).
Proof. We have dz(x,x) = 0(z,Z) = §(x,Z) = T and d(x, y)*d(y,2z) = (§(y, Z) —
0z, 2)) % (60(2,2) = 6(y,2)) < 6(2,Z) = 6(x,Z) = dz(x,z). Hence d is an L-
metric on X. Furthermore, from Lemma 3.3 we obtain d(x, A) * A .4 d(a,Z) <
(x, Z). Using the condition in the lemma, we obtain §(z, A) < (A,c40(a, Z)) —
6(,2) = Vaea (6(a, 2) = 0(z,2)) = Ve a dz(x, a). 0
We have noted above that e.g. the interval [0, c0] with the opposite order and
extended addition as quantale operation, as well as complete MV-algebras satisfy
the condition stated in the lemma.

Finally we are showing that the category L-M ET can nicely be embedded into
the category L-AP.

Theorem 3.8. L-MET can be embedded into L-AP as a coreflective subcategory.

Proof. Let (X,d) be an L-metric space. We define for x € X and A C X
6%z, A) = \/ d(z,a).
acA

Then (X,6%) is an L-approach space. (LD1), (LD2) and (LD3) are easy and
left for the reader. We only provide a proof for (LD4). If y € A", then o <
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5y, A) = Vaead(y,a). Hence a x 5d(x,Z°‘) = * vyeZ" d(x,y) < Vaead(y,a) *
Vyeae d@,9) = Vyear Vaea da,y) * d(y, a) <V eze Voea dz, a) = 8%z, A).

Furthermore, let (X,dx),(Y,dy) € |[L-MET| and let f : X — Y. Then
f:(X,dx) — (Y,dy) is an L-metric morphism if and only if f : (X, ) —
(Y,0%) is an L-approach morphism. If f : (X,dx) — (Y,dy) is an L-metric
morphism, then for z € X and A C X we have §%% (z,4) = \/, ., dx(z,A) <
Vaca dy (F@), £(2)) < Vae o dy (f(2),8) = 8 (f(x), F(A). Hence f : (X, %)
— (Y, 6% ) is an L-approach morphism. The converse is obvious using d(z,y) =
5z, (7).

We note that if (X,d) # (X, d’) for two L-metric spaces, then there are z,y € X
such that 67(z, {y}) = d(z,y) # d'(x,y) = 6% (z, {y}), i.e. (X,6%) # (X,6%). Thus

the functor
L-MET — L-AP

G: (X,d) — (X,69
f —
is an embedding functor.
We define now for (X,0) € |L-AP)|

d’(z,y) = 8(z, {y}).
Then (X,d°) € |L-MET|. We have d°(z,x) = 6(z,{x}) = T for all z € X.

—0 z
Furthermore, by (LD1), we have y € {y} @D nd hence with (LD4) d°(z,y) *

@ (y,2) < 8, Tl ) 5 00, {21) < b, {yh) = (e,

It is furthermore not difficult to see that for an L-approach morphism f :
(X,6x) — (Y,6y), f:(X,d*) — (X,d’) is an L-metric morphism and that
we have for (X,6) € |L-AP| that 6" (z, A) < §(x, A) and for (X,d) € |L-MET]
we have d©")(z, y) = d(z,y). From this the claim follows. O

4. The Category of L-gauge Spaces

Definition 4.1. Let H C L-MET(X) and d € L-MET(X).

(1) d is called locally supported by H if for all z € X, a <9 T, L < w there is
e € H such that e$¥(x, ) xa < d(x,-) V w;

(2) H is called locally directed if for all finite subsets Ho C H, A\ jey,, d is locally
supported by H;

(3) H is called locally saturated if for d € L-M ET(X) we have d € H whenever
d is locally supported by H.

(4) The set

H={de L-MET(X) : dis locally supported by H}
is called the local saturation of H.

For L = [0, oc0] and the opposite order, Lowen [11, 12, 13] calls a locally support-
ing family (locally) dominating. This expression seems not suitable in our setting
why we chose a new term.

We give two characterizations of local support.
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Lemma 4.2. Let H C L-MET(X) and d € L-MET(X). Then d is locally sup-
ported by H iff /\;ceX A\ VeeH (e(z,-) = (d(z," ) Vw)) =T.

Proof. Let first d be locally supported by H. Then for z € X, a < T and L < w
there is e € H such that a < e(x,-) — (d(z,-) V w). Hence, for all a < T we
have o < A cx Ao Veenle(z,:) — (d(z,-) Vw)) from which T =\ _ _ra <

Necx Nizw Veen(elz,) = (d(z,) Vv w)) follows.
Conversely, let A cx Ao Veenle(z,-) = (d(z,-) Vw)) = T. Then for all

r € X and all L < w we have \/_ 4 (e(z,-) = (d(z,-) Vw)) = T. Hence, for a < T,
there is e € H such that e(x,-) — (d(z,-) Vw) > « and this means that d is locally
supported by H. O

For the following characterization, we define for a subset H C L-M ET(X) and
forz € X, theset H(z) ={f: X — L : f(-) > d(z,-),d € H}. The idea of this
result goes back to [5].

Lemma 4.3. Let H C L-MET(X) and d € L-MET(X). Then d is locally sup-
ported by H iff Npex N2 Vi€ L © a— (d(x,))Vw) € H(z)} =T.

Proof. Let first d be locally supported by H. Then forallz € X, a<T, L < w there
is e € H such that e(z, ) < o — (d(z,-) V w). Therefore o — (d(z,-) V w) € H(x)
and we have \/{a € L : a = (d(z,-) Vw) € H(z)} > /ot = T. This is true
for all z € X and all L <w and hence A\ .y A -, V{ia €L : a— (d(z,)Vw) €
H(x)}=T.

Let now the condition of the Lemma be true. Then for all x € X and all 1 <w
we have \/{a € L : a — (d(z,-)Vw) € H(z)} = T. Let < T. Then thereis 8 > «
such that 8 — (d(z,-)Vw) € H(x) and because the set H(x) is an upper set, we find
a — (d(z, ) Vw) € H(x). Hence there is e € H such that e(x,-) < o — (d(zx,-) Vw)
and this means that d is locally supported by H. O

Corollary 4.4. Let H C L-MET(X). The following are equivalent.

(1) H is locally saturated.

(2) /\meX /\J_<w \/eE’H (e(z,:) = (d(z, ) Vw)) =T implies d € H.
3) Noex Nz V{a €L : a— (d(z,)) Vw) € H(z)} = T implies d € H.

Definition 4.5. Let X be a set. § C L-MET(X) is called an L-gauge if G is a
filter in L-M ET(X) and @ is locally saturated. In particular, an L-gauge satisfies
the axioms

(LG1) G # 0;

(LG2) d € G and d < e implies e € G;

(LG3) d,e € G implies d A e € G;

(LG4) G is locally saturated.

The pair (X, G) is then called an L-gauge space. A mapping between two L-gauge
spaces, f : (X,G) — (X',G) is called an L-gauge morphism if d' o (f x f) € G
whenever d’ € G'.

It is not difficult to show that the class of L-gauge spaces together with the
L-gauge morphisms forms a category which shall be denoted L-GS.
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In case that the quantale L is the interval [0, c0] with the opposite order and
extended addition as quantale operation, then [0, co]-gauge spaces are approach
spaces defined by means of gauges, [13]. We will study the relation of L-approach
spaces and L-gauge spaces in the next section.

Definition 4.6. Let (X,G) € |L-GS| and let H C L-MET(X). If H = G, then H
is called a basis for the gauge G.

Proposition 4.7. Let L be a value quantale. If § # H C L-MET(X) is locally
directed, then G = H is a gauge with H as basis.

Proof. Clearly H C ’ﬁ, so that G # 0. If d € H and d < e, then for x € X,
a<T, L <w, there is e2* € H such that e>“(z, ) s a < d(z,") Vw < e(z,") Vw.
Hence e is locally supported by H and e € H. Let now d,e € H. We fix z € X,
a < T and L < w. Then there is 8 < L such that o <1 5 % 3 and hence there are
dPw efw ¢ A such that d2“(z,-)* B < d(x,-) Vw and e (z,-) * 8 < e(z,) V w.
By local directedness then d2“ A e2 is locally supported by H and hence there is
2% € H such that f2«(z,-) * B < dP% A el (x,-) Vw. We conclude

[y ra < f@ ) x BB < (Ao Aeg(, ) % B)V (wV B)
< ((@P(,) % B) A (e (@) * B)) Vw
< ((d(z, ) Vw)A(e(z, ) Vw)Vw < (dAe)(x,) Vw.

Hence d A e is locally supported by H, i.e. dAe € H and H is a filter.

We finally show that H is locally saturated. Let d € L-MET(X) be locally
supported by H and let z € X, a<T and L < w. Thereis < T such that
o <1 B3 and hence there is e? € H such that e (z,-)* 8 < d(z,-) Vw. As e’
is locally supported by H there is 2 € H such that f2«(z,-)* 8 < el (2, ) Vw
and we conclude

FO9 ) ra < f9 () # BB < (e, ) Vw)x B < (e (, ) f) Vw < d(x, ) Vw.
Hence d is locally supported by H, i.e. d € H. O

Theorem 4.8. Let L be a value quantale. Then the category L-GS is topological
over SET.

Proof. Let f; : X — X; (j € J) be a family of mappings and let (X;,G;) € |L-
GS|. We define

H={/N\djo(fxf) : KCJfnite ,d; € G;Vj € J}.
JEK
Clearly H is locally directed, as finite meets of members of H belong to H. For
d; € Gj wehave djo(f;xf;) € H C , so that all mappings i (X, H) —s (X,,65)
are L-gauge morphisms. Let now (Y,K) € |[L-GS| and g : Y — X be a mapping
such that all f;og: (Y,K) — (X;,G;) are L-gauge morphisms. Then for d; € G;
we know that (dy,), = do (f; x fj) o (g x g) € K. Let now d € H. Then fora <1 T,
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1 < w we have for all z € X that
( /\ dj o (f7 x fj)(xa )) * o < d(z, ) Vw,
jeK

with some finite set K C J. We conclude for all y1,y> € Y that

dy(y1,y2) Vw =d(g(y1), 9(y2)) Ve = (N djo (f; x f5)0 (9 % 9)(y1,92)) * .
jeK
As K is a filter, we conclude A;c e djo (fj x fj) o (g x g) € K. Hence dg is locally
supported by K and therefore d, € K and g : (V,K) — (X, #) is an L-gauge
morphism. ([

We finally show that L-G.S has an initially dense object. To this end, we consider
the L-metrics d,, : L X L — L introduced in Example 3.4 and note that Hy =
{Aack da : K C L finite} is locally directed. Hence (L,Hy) is an object in L-G'S.

Theorem 4.9. Let (L, <,*) be a value quantale and let (X,G) € |L-GS|. Then
do() = d(z,-) : (X, LH;
(d:0) = dla. ) (X.0) — (LHL)
s an initial source.

Proof. We show that G is the initial gauge for the source. To this end, we first show
that all d, are L-gauge morphisms. Let x € X and d € G. Let further e € 7TL\L
Then e is locally supported by Hp, i.e. for all n € L, a <1 T and L < w there is a
finite set K = K, o € L and d, € Hy (v € K) such that

/\ d’Y(na') koS 6(7’3') Vw.
yEK
We show that eo (d, x d;) € G. For any x € L we have (k Ad(z1,22)) *d(x1,22) <
kA (d(x,z1) * d(z1,22)) < & Ad(x,x2). Hence d(z1,z2) < (k Ad(z,21)) = (K A
d(z,z9)) = dy(d(z, z1), d(z, x2)).
Let now 21 € X, a <1 T and L < w. Then for all x5 € X we have

eo (dy X dg)(x1,22) Vw = e(d(z, 1), d(x,22)) Vw
> /\ dy(n,-) * o > d(xq,22) * o

'YeKd(m,zl),a,w
Hence e o (d, x d;) is locally supported by G, and therefore belongs to G. Con-
sequently, if we denote the initial L-gauge on X for the source (d, : X —
(L, H1))zex,deg bY Ginit, we have Giniy C G.
Let now d € G. We show that d is locally supported by Gini:. Let x € X, a < T
and 1L < w. Then for z5 € X we have

(do © (dy X dg)(2,22)) ¥ @ = (e A (2, 7)) = (@ N d(z,22))) *
=ax(a— (and(r,z2))) <aAd(z,z) < d(z,z2) Vw.
Hence we have seen d,, o (d, X dz)(x, ) *a < d(z,-) Vw and because dy o (d,; X d;) €

Ginit we conclude that d is locally supported by G;,;: and therefore d € G;,;; and
the proof is complete. ([
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5. L-approach Spaces as L-gauge Spaces
Proposition 5.1. Let (X,0) € |L-AP|. Define

G°={de L-MET(X) : VAC X,z € X :6(x,A) < \/ d(z,a)}.
acA

Then (X,G%) € |L-GS)|.

Proof. We first show that G° is a filter in L-M ET(X). Clearly d = T € G° and
hence G # 0. If d € G° and e > d then \/, . e(z,a) > \/ ,cxd(z,a) > §(z, A)
and hence e € G°. Finally, let di,dy € G°. We denote Gy = {dy,ds}. By complete

distributivity then
VA d@a= A Ve

a€A degy gpegA acA

Now, for ¢ € Q()“ we have

\/ pla)(z,a) = \/ \/ d(z,a) > \/ o(x

a€A deGo acp(d) deGo
U o =4(z, A).
degGo

Hence V¢ 4 Ageg, d(z,a) = /\gaegg‘ Vea vla)(z,a) > 6(x, A) and therefore d; A
dy € g(s.

Next we show that G° is locally saturated. Let d € L-MET(X), let x € X,
a<Tand L <w and let d** € G% such that d®“(z,-) * a < d(z,-) Vw. Then

\/ d(z,a) Vw> \/ dS¥(z,a)xa > d(z, A)

acA a€A
and hence
w\/\/d(xa \/5xA xa=0(x,A)* \/a—5xA)*T—5(xA)
acA a<T agT

This is true for any L < w and we conclude

d(z,A) < /\ (w\/ \/ d(x,a)) = (\/ d(x,a)) v /\ w= \/ d(z,a).

1 <w acA acA 1 <w ac€A
Hence d € G and the proof is complete. O
Proposition 5.2. Let (X,9),(X’,d') € |L-AP| and let f : (X,0) — (X',¢) be
an L-approach morphism. Then f : (X,G?) — (X’,Q‘S') is an L-gauge morphism.

Proof. Let d' € G% . Then for all A’ C X’ and all 2/ € X’ we have o' (' A <
Vaea d(2',a’). We want to show that dy € G°. Let 2 € X and let A C X.

T?en 6(z, A) < 6'(f(2), F(A) < Vaead (f(2), f(a)) = Voea df(z,a). Hence dy €
g°. O
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L-AP — L-GS
Hence we can define a functor £: { (X,0) ~— (X,G°) . We will show in the
o= 7
sequel that in the case of a quantale that satisfies (/\;c; o) = 8=V, ;(e; — B)
for all oj, 8 € L, this functor yields an embedding that is coreflective.

Lemma 5.3. Let L satisfy (\;c;05) = B = Ve (a; = B) for all aj, 8 € L.
Then the functor E is injective on objects.

Proof. Let (X,0),(X,¢') € |L-AP| with § # §’. Then there are z € X and A C X
such that §(x, A) # §'(x, A). Without loss of generality we may assume §(z, A) £
8 (z, A). From Lemma 3.7 we know that d4 € G° where dy4 is defined by da(z,y) =
6(y,A) — 6(z, A). Assume that dy € G°. Then & (z,A) < Vicada(z,a) =
Vacaldla,A) = 6(x, A)) = d(x, A), as for a € A we have §(a, A) = T. This is a
contradiction and hence d4 ¢ G° and (X,G%) # (X,G%). O

Proposition 5.4. Let (X,G) € |L-GS|. If we define 69 : X x P(X) — L by

69(z, A) = /\ \/ d(z,a),

deGacA
then (X,69) € |L-AP].

Proof. (LD1) We have 69(z, {z}) = Ayeg d(z,z) = T.

(LD2) We have 69 (z,0) = Ayeg VO = L.

(LD3) Clearly 69 (x, AUB) > §9(x, A) V 6(x, B). For the converse inequality, let
69(x,A) vV 69(z, B) < a. Then there are da,dp € G such that \/,. 4, da(z,a) < a
and \/,cpdp(z,b) < . As G is an L-gauge we have d4 A dp € G and by local
saturation there is, for <1 T, L < w and 2 € X an L-metric e2* € G such that
el (z,)* B <daNdp(z,-) Vw. Hence we conclude

69z, AUB)* 3 = (/\ \/ d(x,c))*ﬁ < /\( \/ d(x,c)*ﬁ)

deg ce AUB deg \ccAUB
<\ oo p
ceAUB
= (\/ el (x a) v \/ ef’“’(m,b)) * 3
acA beB
= (\/ P (x,a) 5) Y (\/ P (x,b) * B)
acA beB

< (\/ dA(ac,a)\/w)\/<\/ dB(:E,b)\/w> < aVuw.

a€A beB
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Hence we have seen that for all 54T and all 1 < w we have §(z, AUB)*8 < aVw.
Therefore we conclude
89(x,AUB) =69z, AUB)x \/ B=\/ 69z, AUB)xB<aVw
BT BT

and consequently also 09(z, AUB) < A | _ (aVw)=aV A, _, w=a. From this
we obtain 69(xz, AUB) < AN{a € L : §9(x, A) Vv 9(x, B) < a}=9z,A)Vi(z,B).

(LD4) Letz € X, AC X, a € Land <. Forbe A" we have A\ ;g Ve d(b,a)
= 09(b, A) > . Hence for all d € G there is ag € A such that d(b,ag) > 3 and
we conclude d(z,ag) > d(z,b) * d(b,ag) > d(x,b) x 3. Therefore \/ ., d(z,a) >
d(x,b) % f. This is true for any b € A" and hence we obtain

\/d(x,a)z \/(dxb*ﬁ \/d:zb

acA beA? beA”

a€cA

As 8 <1 a was arbitrary, we conclude, using A" C Z’B,

\/ d(z,a) > \/ (( \/ d(x,b))*ﬁ) = \/ d(z,b) * \/ B = \/ d(z, b)) *a

acA B<la bcA” bcA™ B<lo bcA™
This yields

69(x, A) > /\ ( \/ d(x,b)) ) (/\( \/ d(:mb))) s o= 09(x, A%) *

deg \ bcA® deg peA”
and (LD4) is true. O

Proposition 5.5. Let (X,G),(X’',G’) € |[L-GS| and let f : (X,G) — (X',G") be
an L-gauge morphism. Then f : (X,89) — (X',(Sg/) is an L-approach morphism.

Proof. Let x € X and A C X. We have

09 (f@) f(A) = N\ d(@),fa)= N\ ds(,a).

d'€G’ acA d'€g’ acA
As for d' € G’ we have df € G we conclude
6g( /\\/dma—éga:A)
deG acA

L-GS — L-AP
Hence we can define a functor K : { (X,6) — (X,99)
o= f
We will need the following result.
Proposition 5.6. Let L satisfy (\;c; o) = B =V ;e (a; = B) for all aj, B € L.
Let (X,0) € |L-AP| and define G° as in Proposition 5.1. Then for all A C X and
all v € X we have 0(x, A) = Njcgs Voen d(z, a).
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Proof. For d € G° we have \/ ., d(z,a) > 6(z, A) and hence Nacgs Vaca d(z,a) >
d(xz,A). For the converse inequality we make use of Lemma 3.7. Then for any
Z C X,dz € G° where dz(z,y) = §(y,Z) — §(x, Z). Hence we conclude

/\ \/d(x,a) < \/ \/dz(xa = /\ \/ Z) = (x, Z2))

degs a€A ZCX acA ZCX a€A
< V(e 4) = 8z, 4)) = 8(x, 4)
acA
as for a € A we have by (LD1) that §(a, A) = T. O

Corollary 5.7. Let L satisfy (\;c; ;) = B = Ve, (e; = B) for all aj, B € L.
Let (X,0) € |L-AP|. Then 59 =5, i.e. we have K(E((X,9))) = (X,9).

Proposition 5.8. Let (X,G) € |[L-GS|. ThenG C GO ie. we have E(K((X,9)))
2 (X,9).

Proof. For d € G we have 69(z, A) < \/,c 4 d(z,a) and hence d € GO, O
As a corollary, we obtain the following theorem.

Theorem 5.9. Let L satisfy (\;c; ;) = B = Ve, (5 = B) for all o, € L.
Then the category L-AP is isomorphic to a coreflective subcategory of L-GS.

In general, G (&) # G, as is shown by the following two examples.

Example 5.10. Let L = [0,1]U{L = —1, T = 2} and the order inherited from
R with A = x as the quantale operation. Then L < 1 and T < T. Let further
X =(0,1) and define, for z € X, the L-metric e, : X x X — L by

T if a=0
ex(a,b)z{ xz if a#b

It is easily checked that e, is an L-metric on X. Furthermore, we have for A C X

and y € X
/\ \/ ew(yaa) = \/ /\ em(yaa)

zeX a€A a€AzeX

If y € A, then we have A\ cx Vaca€z(¥:a) > Vioeca Nuex ea(y:a) > Npex 6:1:(%3/)
=T.If y ¢ A, then we have y # a for all a € A and hence \/,c 4 A cx €x(y,a) <

/\zEX \/aeA em(% a) < /\xeX z = 0.
We define now
’H:{/\ e; : K C X finite }
zeK

Then H is locally directed and we denote G = H. We define do = /\QE€ x €z. For
A C X and y € X we have

AV dya< \Vewa=\ )\ eba),

degG acA zeX a€A acAxeX
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and hence dy € Gu9). However, dy ¢ G. It is routine to verify that for y € X,
a =T and # = L there is no finite subset K C X such that A, xe.(y, ) =
Nacr €x(y,-) AT < do(y,-) V L = do(y,-). Hence dy is not locally supported by
H, ie. dy ¢ G. With regard to the following theorem we note that L is a linearly
ordered value quantale but does not satisfy the property (I).

Example 5.11. Let L = A*. For 0 < o, 8 < 1 we define the distance distribution
functions @, € AT by

0 if 0<z<l-«
L .
) @t a—-1) if 1-a<z<l1
Pap(T) = %($+5_1) if l<z<1+p8
1 if 1+8<z

Furthermore, we put ¢, = @aq for short. Then poApg = Yang,avs and /\O<a<1 Vo
= po1. We consider now, for a set X and 0 < a < 1, the equilateral space [17]
(X, d,) with

_Jea it pFg
da(p,q) = { c if peg
It is shown in [17] that for any triangle function 7, an equilateral space is a (AT, 7)-
metric space.
For a non-empty A C X and p € X we moreover have

_J o ifpgA
A Vdpa={ 7 frEL

O0<a<la€ceA

_J v ifpgA
\/ /\ da(paa’)_{ o lprA )
a€Al0<a<l

and the equality Aj.ocq Vaca @a(®:a) = Voca Nocact da(p;a) holds trivially if
A =10. We define H = { A\ cxda : K C (0,1) finite}. Then H is locally directed

and we define G = H. For A C X and p € X we then have

AViva<s N\ Vdpa=\ A doa),

deGacA 0<a<lacA a€A0<a<l

and also

and hence dy = Aj.pcq da € G, However, for a = fi/2,1/2 < €0 (see Lemma
v if0<z<d
1 ifo<z
there is no finite subset K C (0,1) such that

2.11) and 8 = g1/4,2 where g5, = , we have e < g1/4,2 but

( /\ da(p, ) N f1/2,1/2> (z) < (do(p,-) V g1/a,2) (x)
acK

for all x € [0,00]. Indeed, for p # ¢ we have with 6 = A\ cxaand v =\ xa
that A,ecg da(p,q) = @5y and for 1 — /2 < z <1 we have + < (A, cx da(p, @) A
fi72,1/2)(x) < & and (do(p, q)Vg1/4,2)(x) = ;. Therefore dy is not locally supported
by G and hence dy ¢ G.
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With regard to the following theorem, we note that if we choose the triangle
function induced by the product t-norm, L = A" satisfies the condition (I) but is
not linearly ordered.

Under certain assumptions, however, we can guarantee that the categories L-AP
and L-GS are isomorphic.

Theorem 5.12. Let (L, <,x) be a linearly ordered value quantale that satisfies the
condition (I). Let further G C L-MET(X) be an L-gauge. Then G =g.

Proof. We have seen above that G C Q(‘Sg). Now we show that g(5g> Cg. Let dy €
G109 and assume do ¢ G. Then dy is not locally supported by G and hence there
isanz € X, a < T, L < w such that for all e € G we have e(z, ) *a € do(z,-) Vw.

As L is a value quantale, there is 8 < T such that o <1 8 * 8 and hence we have for
allee G

e(z, ) * (B*B) £ do(x,-) Vw.
Consider a finite subset Dy C G and define
ADo) ={ye X : N\ dlz,y) =B £ do(z,y) vV w}.
d€Dy
As G is locally directed, there is eg € G such that

co(z,y)xB< N dla,y)Vw.
deDy

As a consequence, if eg(z,y) * (8 % 8) £ do(z,y) V w, then A cp d(z,y) * B £
do(z,y) V w. For otherwise we had

eo(,y) * (B fB) < (( A d(x,y)> *ﬁ) Vw < do(z,y) Vw,

deDy

a contradiction. It follows that

D#{ye X : elx,y)« (Bxp) £ do(x,y) Vw} S A(Dy).

Moreover we have for finite subsets Dy, Dy C G that A(DyUDy) C A(Dy) N A(Dy)
and hence the system {A(Dg) : Dy C G finite} is a filter basis on X. We conclude,

g
using 56°7) = 59,

AN @ ADo) Vw | B

Dy Cg finite

= /\ /\ \/ e(z,a) | xpB

DoCg finite e€9 a€A(Do)
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A AV (Awnoma) s

DoCG finite e€9 a€A(DoU{e}) \deDo

= /\ \/ /\ d(z,a) | =8

DoCG finite a€A(Do) d€Do

— A \V (/\ d(:c,a)*ﬁ>.

DoCG finite a€A(Dy) \de€Dg

Y

As L is linearly ordered, the last expression is

> A \V  (do(z,a) Vw)

DoCG finite a€A(Do)

> A ANV (eza)vw)
Do CG finite eeg(s9) a€A(Do)
g
> A 9@ AD) Ve > N\ 6% ADo) V.
DoC¢ finite DoCG finite
As L satisfies the property (I), this is a contradiction and hence dy € G. (]

We obtain from Corollary 5.7 and Theorem 5.12 the following result.

Theorem 5.13. Let (L, <, %) be a linearly ordered value quantale that satisfies the
condition (I) and (\;cya;) = B = Ve (e — B) for all aj,8 € L. Then the
categories L-GS and L-AP are isomorphic.

In case of L = [0, 00| and the opposite order and extended addition as quantale
operation, we see that in the case of approach spaces [11] the conditions on L are
satisfied and hence ([0, o0]-) gauges and ([0, 0o]-) approach distances are equivalent
concepts. However, as can be seen with Example 5.11, probabilistic approach spaces
[9] cannot equivalently be described by At-gauges.

6. L-metric Spaces as L-gauge Spaces

Theorem 6.1. The category L-MET is isomorphic to a coreflective subcategory
of L-GS.

Proof. Let (X,d) € |L-MET| and define G¢ = [d] = {e € L-MET(X) : d < e}.
As G = [d] is a principal filter, it is naturally locally saturated and hence (X, G%) €
|L-GS|. Furthermore, let f : (X,d) — (X’,d’) be an L-metric morphism and let
¢ € G¥. Then d < ¢ and hence ef(z,y) = ¢ (f(z), f(y) > d'(f(x), f(y)) >
d(x,y). Hence e; € G% and f : (X,G%) — (X’,6%) is an L-gauge morphism.
L-MET — L-GS
Hence we can define a functor F : (X,d) +~— (X,G% . This functor is
f — f

clearly injective on objects, for if we have two different L-metrics on X, we may
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assume d(z,y) £ d'(z,y) for 2,y € X. But then d’ ¢ G% whereas d’ € G¥. Let
now (X,G) € |L-GS| and define d9 : X x X — L by d9(z,y) = Ayegd(z,y).
Then (X,dY) € |L-MET)|. For (X,G),(X’,G") € |L-GS| and an L-gauge morphism
f:(X,6) — (X',¢) then f : (X,d9) — (X’,d9") is an L-metric morphism.
To see this, let 2,y € X. Then, because for d € G’ we have dy € G, we con-
cude d9'(f(2), 1) = Ageg (), @) = Apegr ds(@ ) > Aseg dlz,y) =
L-GS — L-MET
d9(z,y). Hence we can define a functor H : (X,G) — (X,d9) . For
o= f
(X,d) € [L-MET| and z,y € X we have d9")(z,y) = Neege €(®,9) = Nesqe(z,y)
= d(z,y). This shows d9") = d, i.e. F(H((X,d))) = (X,d). For (X,G) € |[L-GS|
and e € G we have d9(z,y) < e(x,y) for all z,y € X and therefore e € G49). Hence
G CGU) ie H(F((X,0))) > (X,G). O

Lemma 6.2. Let (X,d) € |L-MET|. Then G% = G%, i.e. we have F = E o G.

Proof. We have e € g% if and only if for all z € X and all A C X we have
6%z, A) < Ve e(w,a), ie. if and only if for all z € X and all A C X we have
Viaead(@,a) <V, cqe(x,a). Taking for A the one-point sets, we see d < e, i.e.
e € G Conversely, if e € G4, then d < e and hence §%(z, A) < \/ 4 e(x,a) for all

z€X and all AC X, ie. ec GO, 0
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