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INCOMPLETE INTERVAL-VALUED HESITANT FUZZY

PREFERENCE RELATIONS IN DECISION MAKING

A. KHALID AND I. BEG

Abstract. In this article, we propose a method to deal with incomplete

interval-valued hesitant fuzzy preference relations. For this purpose, an addi-

tive transitivity inspired technique for interval-valued hesitant fuzzy preference
relations is formulated which assists in estimating missing preferences. First

of all, we introduce a condition for decision makers providing incomplete in-

formation. Decision makers expressing incomplete data are expected to abide
by the proposed condition. This ensures that the estimated preferences are

well-defined intervals which otherwise may not be possible. Additionally, this

condition eliminates the problem of outlying estimated preferences. After re-
solving the issue of incompleteness, this article proposes a ranking rule for

reciprocal and non-reciprocal interval-valued hesitant fuzzy preference rela-
tions.

1. Introduction

An essential component of preference modeling is the representation format that
is used to express preferences in a decision modeling framework. Over the past two
decades, researchers have proposed several different domains for decision makers,
in order to express their choices effectively. As a consequence, the process of de-
cision making has evolved and improved in the sense that real world problems are
represented in a more efficient and realistic manner.

Preference relations are used as an essential tool to model decision making and
multiple attribute decision making problems [9]. For this purpose, literature pro-
poses preference relations, fuzzy and multiplicative fuzzy preference relations [15],
linguistic and multi granular linguistic preference relations [14]. To model sub-
jective uncertainty in decision making models, interval fuzzy preference relations
[29, 30] were proposed. To cater for ambiguity and vagueness, hesitant fuzzy sets
(HFSs) were introduced by Torra [16, 17] and consequently hesitant fuzzy prefer-
ence relations (HFPRs) were studied by Xia et al. [23]. Further generalization of
HFPRs are interval valued hesitant fuzzy preference relations (IVHFPRs) proposed
by Chen et al. [2] and aggregation operations for IVHFPRs were studied in [21].

It is well established in literature that consistency properties are an essential
part of decision modeling. Consistency in decision making is based on transitivity
properties. Consistency properties of fuzzy and intuitionistic fuzzy preference re-
lations were studied by Xu et al. [32] and Liao et al. [10], respectively. Cardinal
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consistency of preference relations and consistency of two tuple linguistic sets was
studied in [4, 5]. Consistency of interval valued intuitionistic fuzzy relations was
proposed by Liao et al. [11]. Also, consistency properties of multiplicative hesitant
fuzzy preference relations was studied by Liu et al. [12].

Expecting consistent and complete information from all experts in a decision
making process is unrealistic. In this paper, it is asserted that incomplete infor-
mation should not be discarded. The reason is that this may lead to loss of some
important data. Literature proposes several methods to deal with incompleteness
[1, 3, 8, 18, 35, 27]. Recent studies dealing with incompleteness can be studied
in detail in [7, 6, 25, 31, 36, 33, 18, 24]. In this paper, in order to define consis-
tency, we propose transitivity property for IVHFPRs and use this property to tackle
incomplete information. We prove that use of transitivity for IVHFPRs alone is
not appropriate to estimate preferences because transitivity may lead to estimations
that are not well-defined. Moreover, transitivity property alone results in estimated
preferences that surpass the defined domain. Literature proposes transformation
functions for surpassed values but we stress that such functions void originality of
the decision maker’s original preferences.

The focus of this paper is on completing missing information without changing
the information provided by the decision makers. It is stressed that if estimated
preference outlies the settled domain, then the resultant matrix does not qualify
as IVHFPR. We assert that if transformation functions are used, then the trans-
formed estimated values are attained at the cost of voiding originality of the deci-
sion maker’s original preferences. To resolve these problems, we propose an upper
bound condition (cihr) for all decision makers presenting incomplete information.
This condition is inspired by the additive transitivity condition for IVHFPRs. It
has already been discussed that transitivity condition alone can not be used to
tackle incompleteness in IVHFPRs. This is because it results in intervals that are
not well-defined and hence are not applicable in the process of decision making.
With the help of property (cihr) we can estimate missing preferences that are well
defined and respect the given domain.

The other focus of this paper is on ranking of IVHFPRs. Zhu et al. [34] proposed
a ranking method for hesitant fuzzy preference relations. Ranking method for
hesitant fuzzy linguistic term set was presented in [19]. Score functions were used
by Zhang et al. [37] to rank interval valued multiplicative hesitant fuzzy preference
relations. Mandal et al. [13] studied a distance metric based ranking rule for
IVHFPRs used in critical path problem. This paper proposes a ranking method for
IVHFPRs that is less complicated and less time consuming as compared to other
ranking methods in the literature. This ranking method finds scores of all interval
valued hesitant fuzzy elements and then identifies the least score of each row. The
least score represents an alternative that is preferred over all other alternatives by
at least this score. Then we find the degree of possibility of an alternative to be
preferred over the other. We set a lower cut of 0.5 and stress that an alternative
is preferred over the other if the degree of possibility of an alternative preferred
over the other alternative is greater than or equal to 0.5. This ranking method is
applicable to transitive and non-transitive IVHFPRs.
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The main contribution of this paper is the upper bound condition (cihr) for
IVHFPRs. We split the case of incompleteness in to three categories which have
not been considered in literature before. In literauture, it is presumed that number
of intervals in each interval valued hesitant fuzzy element (IVHFE) is the same.
This is a strong assumption. In our study, equal number of intervals for each
IVHFE is one of the three possible cases. The other two cases cater for situations
when cardinality of two IVHFE is not the same.

This paper is organized as follows: Section 2 is based on preliminaries that are
used in the sequel. Section 3 states that using transitivity alone leads to estimated
values that are not intervals. The reason is that they are not well-defined. The
second problem caused by transitivity is exaggeration of estimated values from the
defined domain. In this section we restate additive transitivity for IVHFPRs and
instead of using transitivity in its crude form, we formulate a transitivity inspired
method to estimate missing information. This results in estimated preferences that
are well-defined. To cater for outliers, we propose condition (cihr) for decision
makers with incomplete information. This condition ensures that the missing pref-
erences do not surpass the domain D[0, 1], representing set of all subintervals of
the unit interval. Section 3 uses [28] to develop a ranking method appropriate for
IVHFPRs. Section 4 concludes the research article and proposes possible future
directions.

2. Preliminaries

Definition 2.1. [16] Let X be a fixed non-empty set, a hesitant fuzzy set (HFS)
on X is represented by a function h that when applied to X, returns a subset of
[0, 1]. Xia and Xu [22] proposed that HFS can be stated mathematically as follows:

E = {< x, hE(x) >: x ∈ X}
where hE(x), hesitant fuzzy element, is the set of values in [0, 1] and it represents
the probable membership degrees of the element x ∈ X to the set E.

Definition 2.2. [9] Variance of a hesitant fuzzy element h is defined as

v(h) =
1

lh

√ ∑
γi,γj∈h

(γi − γj)2

where lh is the cardinality of h and v(h) is the deviation degree of h. This reflects
the standard deviation among all pairs of elements in a hesitant fuzzy element of h .
For two hesitant fuzzy elements h1 and h2 if v(h1) > v(h2) then h1 < h2. Moreover,
if v(h1) = v(h2) then h1 = h2.

Definition 2.3. [23] A hesitant fuzzy preference relation H on X is represented
in matrix form as H = (hij)n×n ⊂ X ×X, where hij = {hsij , s = 1, 2, ..., lhij

} is a
hesitant fuzzy element indicating all possible degrees to which xi is preferred over
xj . Furthermore, the following conditions must be satisfied for i, j = 1, 2, ...n.

i.: hii = {0.5}
ii.: h

σ(s)
ij + h

σ(lhij
−s+1)

ji = 1
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iii.: lhij
= lhji

Definition 2.4. [28] Let ȧ = [aL, aU ] and ḃ = [bL, bU ] be two interval numbers and
` ≥ 0, then,

i.: ȧ = ḃ if and only if aL = bL and aU = bU

ii.: ȧ+ḃ = [aL + bL, aU + bU ]
iii.: `ȧ = [`aL, `aU ]

Definition 2.5. [28] Let ȧ = [aL, aU ] and ḃ = [bL, bU ] be two interval numbers and

let lȧ = aU − aL and lḃ = bU − bL represent the length of ȧ and ḃ; then to compare

two interval numbers, the degree of possibility of ã < b̃ is defined as

p(ȧ < ḃ) = max{1−max(
bU − aL

lȧ + lḃ
, 0), 0}

Definition 2.6. [2] Let X be a reference set, and D[0, 1] be the set of all closed
subintervals of [0, 1]. An interval-valued hesitant fuzzy set IVHFS on X is defined
as

Ã = {< xi, h̃Ã(xi) >: xi ∈ X, i = 1, 2, ..., n}
where h̃Ã(xi) : X → D[0, 1] represents all possible interval valued membership

intensities of xi to Ã. Also, h̃Ã(xi) is called an interval-valued hesitant fuzzy element

which reads h̃Ã(xi) = {γ : γ ∈ h̃Ã(xi)}. Here, γ = [γL, γU ] is an interval number

such that γL = inf γ and γU = sup γ is the lower and upper limit of γ, respectively.

Definition 2.7. [2] An interval-valued hesitant fuzzy preference relation (IVHFPR)
on X is denoted by R = (r̃ij)n×n ⊂ X ×X, where r̃ij = {r̃sij , s = 1, 2, .., lr̃ij} is an
interval-valued hesitant fuzzy element (IVHFE) representing all possible degrees to
which alternative xi is preferred over xj and lr̃ij denotes the number of intervals in
an IVHFE. Also, r̃ij should satisfy the following:

i.: inf r̃
σ(s)
ij + sup r̃

σ(lr̃ij−s+1)

ji = sup r̃
σ(s)
ji + inf r̃

σ(lr̃ji−s+1)

ij = 1

ii: r̃ii = {[0.5, 0.5]}
where r̃

σ(s)
ij represents the smallest value in r̃ij . Moreover, inf r̃

σ(s)
ij and sup r̃

σ(s)
ij

denote the lower and upper limits of r̃
σ(s)
ij .

Definition 2.8. [2] Let h̃, h̃1 and h̃2 be IVHFEs. Then the following operations
are defined:

i.: h̃c = {1− γU , 1− γL : γ ∈ h̃}
ii.: h̃1 ∪ h̃2 = {[max(γL1 , γ

L
2 ),max(γU1 , γ

U
2 )] : γ1 ∈ h̃1, γ2 ∈ h̃2}

iii.: h̃1 ∩ h̃2 = {[min(γL1 , γ
L
2 ),min(γU1 , γ

U
2 )] : γ1 ∈ h̃1, γ2 ∈ h̃2}

iv.: h̃1 ⊕ h̃2 = {[γL1 + γL2 − γL1 γL2 , γU1 + γU2 − γU1 γU2 ] : γ1 ∈ h̃1, γ2 ∈ h̃2},
iii.: h̃1 ⊗ h̃2 = {[γL1 γL2 , γU1 γU2 ] : γ1 ∈ h̃1, γ2 ∈ h̃2}

Definition 2.9. [2] Score function h̃ of an IVHFE is defined as

s(h̃) =
1∣∣∣h̃∣∣∣
∑
γ∈h̃

γ
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where
∣∣∣h̃∣∣∣ represents the number of intervals in h̃ and s(h̃) is an interval value

which is a subset of [0, 1].

3. Incomplete interval-valued hesitant fuzzy preference relations

Xu et al. [26] proposed definition of an additive transitive interval-valued fuzzy
preference relations as follows. For all i, j, k such that i < j < k,

r̃ij+r̃jk=r̃ik+[0.5, 0.5] (1)

However, an example was given in [26] which was contrary to equation (1). Wang
[20] highlighted that this definition is dependent on alternative labels and is not ro-
bust to permutations of the decision maker’s pairwise judgments. Consequently, for
all i, j, k = 1, 2, ..., n, Wang stated additive transitivity for interval fuzzy preference
relations as follows:

r̃ij+r̃jk+r̃ki = r̃kj+r̃ji+r̃ik

In this section, we first propose additive transitivity for IVHFPR. Our proposed
definition is more convenient and useful for estimating missing information. It
needs to be noted that operations used for IVHFPRs must be well defined. This
means that when two interval-valued hesitant fuzzy sets are added, the resultant
must be a subset of the unit interval. Secondly, literature portrays examples based
on binary operations on IVHFPRs but the particular case where IVHFEs have
different cardinalities is not presented.

We introduce additive transitivity for IVHFPRs to cater for incompleteness.
Consider r̃ik and r̃kj to be IVHFPRs, then for t ∈ {1, 2, ..., p}, we have the following:

r̃
(t)
ij = r̃

(t)
ik ⊕̂r̃

(t)
kj 	̂[0.5, 0.5] =

[inf(inf r̃
(t)
ik + sup r̃

(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5),

sup(inf r̃
(t)
ik + sup r̃

(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5)]

(2)

Additive transitivity property may be used to complete IVHFPRs where all
known IVHFEs have the same cardinalities. However, number of intervals in cor-
responding IVHFEs may not be equal. For this purpose, we need to discuss the
case where cardinalities of two IVHFEs are different. We propose the following
algorithm which discusses the possibilities of two IVHFEs with same cardinalities
and also when cardinalities are not the same. In literature, these cases have not
been addressed.

Consider r̃ik and r̃kj to be two IVHFPRs. Let p = min{|r̃ik| , |r̃kj |} where
|r̃ik| and |r̃kj | represents the number of intervals in r̃ik and r̃kj respectively. In
the following, we formulate an additive transitivity inspired algorithm to resolve
incompleteness in IVHFPR. This algorithm also caters for cases when two IVHFEs
have different cardinalities. We stress that this case should not be ignored.
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If |r̃ik| = |r̃kj | then for t ∈ {1, 2, ..., p},

r̃
(t)
ij = [inf(inf r̃

(t)
ik + sup r̃

(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5), sup(inf r̃

(t)
ik +

sup r̃
(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5)]

Otherwise, if |r̃ik| > |r̃kj | then for t ∈ {1, 2, .., p},

r̃
(t)
ij = [inf(inf r̃

(t)
ik + sup r̃

(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5), sup(inf r̃

(t)
ik +

sup r̃
(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5)]

and for t ∈ {p+ 1, p+ 2, .., |r̃ik|}

r̃
(t)
ij = r̃

(t)
ik

Whereas, if |r̃ik| < |r̃kj | then for t ∈ {1, 2, .., p}

r̃
(t)
ij = [inf(inf r̃

(t)
ik +sup r̃

(t)
kj −0.5, sup r̃

(t)
ik +inf r̃

(t)
kj −0.5), sup(inf r̃

(t)
ik + sup r̃

(t)
kj −0.5,

sup r̃
(t)
ik + inf r̃

(t)
kj − 0.5)]

and for t ∈ {p+ 1, p+ 2, .., |r̃kj |}

r̃
(t)
ij = r̃

(t)
kj

Using this criteria, two of the above mentioned problems are resolved. This
algorithm will estimate IVHFEs that are well-defined intervals. Secondly, this al-
gorithm can be used effeciently when the number of intervals in two IVHFEs is
not the same. The only persisting issue is that of outlying preferences. If we esti-
mate missing preferences and then define a transformation function to bring back
the outliers then the originality of decision maker’s personal opinion will be voided.
That is, the altered values will not be an amalgamation of the decision maker’s pro-
vided preferences r̃ik and r̃kj . Therefore, in order to resolve the problem of outlying
preferences, we propose condition (cihr) for decision makers delivering incomplete
IVHFPRs. Given that the least element of an IVHFE is less than 0.5, the preference
intensities are said to satisfy condition (cihr) if the least and greatest members of
IVHFEs of any fixed row i′ satisfy the following condition.

inf( inf
t∈{1,2,..,n}

r̃
(t)
i′k) > sup( sup

s∈{1,2,..,n}
r̃
(s)
i′j )− 0.5

We assume that the least element in any IVHFE will be less than 0.5 because
otherwise if the least element is greater than 0.5 then the reciprocal IVHFE will
have least element that is less than 0.5 anyway. Which means that this condition
will still apply in one way or the other. We claim that if a decision maker satisfies
this condition, then the estimated preferences will be expressible. However, if the
decision maker does not satisfy this property, then additive transitivity for IVHF-
PRs will not help in estimating expressible preferences. We prove this statement in
the next theorem. We refer to a missing preference as hesitant crucial preference
if it can be estimated using the least and greatest member of all hesitant fuzzy
elements provided by the expert. This definition of hesitant crucial preference is
used in proving the following theorem.
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Theorem 3.1. Suppose that n preferences in an n by n interval-valued hesitant

fuzzy preference relation are provided as r̃
(t)
kj , t ∈ N for fixed k 6= j and j ∈

{1, 2.., n}. If interval-valued hesitant fuzzy preferences r̃
(t)
kj satisfy property (cihr)

then the missing preference can be estimated. Moreover, the estimated preferences
are expressible.

Proof. Since decision makers are consistent, therefore, r̃kj = {[0.5, 0.5]} for k = j.
Suppose that (n − 1) preference intensities provided by the decision maker satisfy
condition (cihr). This means that all interval-valued hesitant fuzzy set in the k−th
row r̃

(t)
k1 , r̃

(t)
k2 , ..., r̃

(t)
kn satisfy condition (cihr). That is,

inf( inf
t∈{1,2,..,n}

r̃
(t)
i′k) > sup( sup

s∈{1,2,..,n}
r̃
(s)
i′j )− 0.5

and

sup(sup r̃
(t)
k1 , sup r̃

(t)
k2 , ..., sup r̃

(t)
kn) < inf(inf r̃

(t)
k1 , inf r̃

(t)
k2 , ..., inf r̃

(t)
kn) + 0.5.

Suppose that the least and the greatest element of the k − th row in the IVHFPR
is denoted by

inf(inf r̃
(t)
k1 , inf r̃

(t)
k2 , ..., inf r̃

(t)
kn) + 0.5 = inf r̃

(t)
ki

sup(sup r̃
(t)
k1 , sup r̃

(t)
k2 , ..., sup r̃

(t)
kn) = sup r̃

(t)
kj

respectively. Then according to property (cihr) we have

0 ≤ sup r̃
(t)
kj < inf r̃

(t)
ki + 0.5.

(4)

Also, inf r̃
(t)
ki ≤ sup r̃

(t)
ki and inf r̃

(t)
kj ≤ sup r̃

(t)
kj which further implies the following

equations:

0 ≤ sup r̃
(t)
kj < sup r̃

(t)
ki + 0.5 (5)

0 ≤ inf r̃
(t)
kj < sup r̃

(t)
ki + 0.5 (6)

We state the proof in two steps. We first prove that if crucial preference is
estimated to be expressible then all other unknown preferences will be expressible as
well. We then prove that if (cihr) is satisfied then the crucial preference will always

be expressible. According to our assumption, the crucial preference is r̃
(t)
ij = {

r̃
(1)
ij , r̃

(2)
ij , ..., r̃

(t)
ij }.

For the first part of the proof, assume that r̃
(t)
ij is expressible, which means that

r̃
(t)
ij ∈ D[0, 1]. Let r̃

(t)
sj , s 6= j be a missing preference other than the crucial value.

Then, according to the definition of additive transitivity for IVHFPR, we have

inf r̃
(t)
sj = inf r̃

(t)
sk + sup r̃

(t)
kj − 0.5

sup r̃
(t)
sj = sup r̃

(t)
sk + inf r̃

(t)
kj − 0.5

We consider the above equation to prove that inf r̃
(t)
sj is expressible. Consider

inf r̃
(t)
sj = inf r̃

(t)
sk +sup r̃

(t)
kj −0.5 ≤ (1−sup r̃

(|r̃ks|−t+1)
ks )+inf r̃

(t)
ki since sup r̃

(t)
kj −0.5 <
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inf r̃
(t)
ki because of equation (5). We know that inf r̃

(t)
ki ≤ sup r̃

(|r̃ks|−t+1)
ks ≤ sup r̃

(t)
kj .

Therefore, inf r̃
(t)
sj ≤ (1 − sup r̃

(|r̃ki|−t+1)
ik ) + sup r̃

(|r̃ks|−t+1)
ks , which is equal to 1.

Therefore, inf r̃
(t)
sj ∈ [0, 1] and hence, r̃

(t)
sj is expressible.

Similarly, using equation (6) we can follow similar steps to prove that sup r̃
(t)
sj

is expressible. This proves that if hesitant crucial preference is expressible then so
are other missing preferences.

We now prove that if the condition (cihr) is satisfied by the given preferences
then the crucial preference can be estimated and it is expressible. Using additive
consistency for IVHFPR we state that for i, j, k ∈ {1, 2, ..., n}, inf r̃tij = inf r̃tik +

sup r̃tkj − 0.5. Using equation (4) we have, inf r̃tij < inf r̃tik + inf r̃
(t)
ki + 0.5 − 0.5 =

inf r̃tik + (1− sup r̃
(|r̃ik|−t+1)
ki ) = 1. Which proves that inf r̃tij is expressible.

Similarly, sup r̃tij = sup r̃tik + inf r̃tkj − 0.5 < sup r̃tik + 1 − sup r̃
(|r̃ik|−t+1)
ki =

1 implying, sup r̃tij is also expressible. Therefore, r̃tij is written as [inf(inf r̃
(t)
ik +

sup r̃
(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj − 0.5), sup(inf r̃

(t)
ik + sup r̃

(t)
kj − 0.5, sup r̃

(t)
ik + inf r̃

(t)
kj −

0.5)]. Otherwise, if cardinalities are not the same then they are written as mentioned
earlier in this section.

Therefore, r̃tij ∈ D[0, 1]. Hence, the crucial interval-valued hesitant fuzzy prefer-
ence is expressible. �

Example 3.2. Consider X = {hosp1, hosp2, hosp3, hosp4} to be the set of hospitals
in Lahore with the facility of hair transplant. A patient is to express his preferences
over these hospitals based on the number of successful procedures proclaimed by
these hospitals. The patient feels the need of more information to be able to express
his opinion. Under the given circumstances, he is certain about his preferences of
only the second hospital over others. However, the patient abides by condition
(cihr).

{[0.5, 0.5]} {[0.2, 0.3], [0.5, 0.6]} − −

{[0.4, 0.5],
[0.7, 0.8]} {[0.5, 0.5]} {[0.7, 0.8], [0.8, 0.9]}

{[0.4, 0.6],
[0.5, 0.6],
[0.6, 0.8]}

− {[0.1, 0.2], [0.2, 0.3]} {[0.5, 0.5]} −

− {[0.2, 0.4], [0.4, 0.5],
[0.4, 0.6]} − {[0.5, 0.5]}


Here interval-valued hesitant fuzzy preferences intensities of the second column are

estimated using definition 7. For example, to estimate r̃
(1)
12 , we have

inf r̃
(1)
21 + sup r̃

(2−1+1)
12 = 1, sup r̃

(1)
21 + inf r̃

(2−1+1)
12 = 1

and

inf r̃
(2)
21 + sup r̃

(2−2+1)
12 = 1, sup r̃

(2)
21 + inf r̃

(2−2+1)
12 = 1

That is, r̃
(1)
12 = [0.2, 0.3] and sup r̃

(2)
12 = [0.5, 0.6]. Preferences in the second column

are stated using additive reciprocity for IVHFPRs.
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Regarding other missing preferences, we do not use additive transitivity directly
because that causes two issues; the problem of outliers and the issue of values that
are not well-defined intervals. Therefore, we use algorithm mentioned earlier to
estimate the missing preferences. In order to find r̃13 we need r̃12 and r̃23 and
according to the above algorithm, we need to check cardinality of these interval-
valued hesitant fuzzy sets. Since |r̃12| = |r̃23| , therefore,

r̃
(1)
13 =

[inf(inf r̃
(1)
12 + sup r̃

(1)
23 − 0.5, sup r̃

(1)
12 + inf r̃

(1)
23 − 0.5),

sup(inf r̃
(1)
12 + sup r̃

(1)
23 − 0.5, sup r̃

(1)
12 + inf r̃

(1)
23 − 0.5)]

and

r̃
(2)
13 =

[inf(inf r̃
(2)
12 + sup r̃

(2)
23 − 0.5, sup r̃

(2)
12 + inf r̃

(2)
23 − 0.5),

sup(inf r̃
(2)
12 + sup r̃

(2)
23 − 0.5, sup r̃

(2)
12 + inf r̃

(2)
23 − 0.5)]

which implies that

r̃13 = {[0.5, 0.5], [0.9, 0.9]} and accordingly,

r̃31 = {[0.1, 0.1], [0.5, 0.5]}

Similarly, according to algorithm mentioned above, in order to estimate r̃14 we note
that |r̃12| < |r̃24| . Therefore,

r̃
(1)
14 =

[inf(inf r̃
(1)
12 + sup r̃

(1)
24 − 0.5, sup r̃

(1)
12 + inf r̃

(1)
24 − 0.5),

sup(inf r̃
(1)
12 + sup r̃

(1)
24 − 0.5, sup r̃

(1)
12 + inf r̃

(1)
24 − 0.5)]

which implies that r̃
(1)
14 = [0.2, 0.3] and r̃

(2)
14 = [0.6, 0.6]. Also, r̃

(3)
14 = r̃

(3)
24 = [0.6, 0.8].

That is,

r̃14 = {[0.2, 0.3], [0.6, 0.6], [0.6, 0.8]} and

r̃41 = {[0.2, 0.4], [0.4, 0.4], [0.7, 0.8]}.

Similarly,

r̃34 = {[0.1, 0.2], [0.3, 0.3], [0.6, 0.8]} and

r̃43 = {[0.8, 0.9], [0.7, 0.7], [0.2, 0.4]}.

We have catered for incompleteness with well-defined interval-valued hesitant fuzzy
elements. The completed relation is as follows:-

{[0.5, 0.5]} {[0.2, 0.3],
[0.5, 0.6]}

{[0.5, 0.5],
[0.9, 0.9]}

{[0.2, 0.3], [0.6, 0.6],
[0.6, 0.8]}

{[0.4, 0.5], [0.7, 0.8]} {[0.5, 0.5]} {[0.7, 0.8],
[0.8, 0.9]}

{[0.4, 0.6], [0.5, 0.6],
[0.6, 0.8]}

{[0.1, 0.1], [0.5, 0.5]} {[0.1, 0.2],
[0.2, 0.3]} {[0.5, 0.5]} {[0.1, 0.2], [0.3, 0.3],

[0.6, 0.8]}

{[0.2, 0.4], [0.4, 0.4],
[0.7, 0.8]}

{[0.2, 0.4],
[0.4, 0.5],
[0.4, 0.6]}

{[0.8, 0.9],
[0.7, 0.7],
[0.2, 0.4]}

{[0.5, 0.5]}


The resultant relation comprises of expressible and well-defined preferences.
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Using limited information provided by the patient, we have completed his pref-
erence relation. With complete information, the relation can be ranked in order to
identify the most preferred hospital for hair transplant.

4. Ranking of interval-valued hesitant fuzzy preference relations

Algorithm defined in section 3 ensures that the estimated preferences are well-
defined. Moreover, condition (cihr) promises expressibility of the missing prefer-
ences. Once the problem of incompleteness is catered, we hereby discuss ranking of
IVHFPRs. Ranking a preference relation is mandatory as it allows us to realize the
importance of each alternative. Ranking of alternatives may deduce possible ties
that may arise during the process. This situation can direct the decision makers to
choose some other methods to dissolve ties.

Mandal et al [13] suggest a distance based ranking method for IVHFPRs used in
critical path problem. This method is applicable in the presence of several IVHF-
PRs. In this case, a distance metric is defined to form difference matrices based
on different IVHFEs. Eventually score functions are used on these difference ma-
trices and preferred alternatives are discovered based on the corresponding scores.
In this paper, we assume just one collective IVHFPR which may be transitive or
non-transitive. Due to this assumption, we no longer require to go through distance
metric based process that is relatively tedious.

We use the definition of degree of possibility and score function to define rank
of IVHFPRs. Given an IVHFPR, for each row i ∈ {1, 2, .., n}, we first identify an

IVHFE h̃ik′ , i 6= k′ 6= j, such that

h̃ij < h̃ik′ if p(s(h̃ij) < s(h̃ik′)) ≥ 0.5

This results in a collection of IVHFEs from each row {h̃1k′ , h̃2k′ , h̃3k′ , ..., h̃nk′},
with low degree of possibility as compared to other IVHFEs of the row. Now, in

order to compare alternative xi over xj , members of the set {h̃1k′ , h̃2k′ , ..., h̃nk′} are
compared pair-wise with the help of the following: xi 3 xj if and only if

p(s(h̃ik′), s(h̃jk′)) ≥ 0.5

According to definitions 5 and 9, this implies that alternative xi is ranked higher

than alternative xj if and only if degree of possibility of the score of IVHFE h̃ik′

over h̃jk′ is greater than or equal to 0.5. This ranking rule is applicable to any
transitive or non-transitive IVHFPR.

In diagram 1, we summarize and explain the method suggested in this paper.
This ranking method is applied to a non-transitive IVHFPR in the following

example.

Example 4.1. Let X = {x1, x2, x3} represent three medicines to control the activ-
ity of Hepatitis B virus in patients. A doctor is requested to express her preferences
over these medicines based on her experience of how well each medicine has served
over years for patients of this disease. Following is the IVHFPR that is presented
by the doctor.
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Figure 1


{[0.5, 0.5]} {[0.2, 0.4], [0.3, 0.5]} {[0.3, 0.4], [0.5, 0.6],

[0.4, 0.7]}
{[0.5, 0.7], [0.6, 0.8]} {[0.5, 0.5]} {[0.7, 0.9], [0.8, 1]}
{[0.3, 0.6], [0.4, 0.5],

[0.6, 0.7]} {[0, 0.2], [0.1, 0.3]} {[0.5, 0.5]}


We rank this IVHFPR according to the ranking rule defined above. Let us first

find score of each interval valued hesitant fuzzy element. We have the following
scores.

s(h̃12) = [
0.2 + 0.3

2
,

0.9

2
] = [0.25, 0.45]

s(h̃21) = [
0.5 + 0.6

2
,

1.5

2
] = [0.55, 0.75]

s(h̃13) = [0.4, 0.56]; s(h̃31) = [0.43, 0.6]

s(h̃23) = [0.75, 0.95] and s(h̃32) = [0.05, 0.25]

Now let us determine the most desirable alternative among each row. For this
purpose, we restrict to one row at a time. So, from the first row we notice that

p(s(h̃13), s(h̃12)) = max{1−max(
0.45− 0.4

0.2 + 0.16
, 0), 0} = 0.861 ≥ 0.5

which implies that h̃12 < h̃13 according to our ranking rule. Similarly,

p(s(h̃21), s(h̃23)) = max{1−max(
0.95− 0.55

0.2 + 0.2
, 0), 0} ≥ 0.5.
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That is, h̃23 < h̃21. Also,

p(s(h̃31), s(h̃32)) = max{1−max(
0.25− 0.43

0.515 + 0.15
, 0), 0} ≥ 0.5

which means that h̃32 < h̃31.
Therefore, the set of interval-valued hesitant fuzzy element from each row whose

score has low possibility as compared to others in the row is {h̃12, h̃23, h̃32}. Now, we
compare the three alternatives x1, x2 and x3 by pair-wise comparison of elements

in the set {h̃12, h̃23, h̃32}. Accordingly, p(s(h̃12), s(h̃23)) = 0 � 0.5 which implies

that x2 3 x1. Also, p(s(h̃23), s(h̃32)) = 1 ≥ 0.5 which implies that x2 3 x3. And

p(s(h̃12), s(h̃32)) ≥ 0.5 implying x1 3 x3.
Therefore, according to this example we have, x2 3 x1 3 x3. That is, the

second medicine has controlled the Hepatitis B virus better as compared to the
first medicine which is still better than medicine number three.

Similarly, additive reciprocal IVHFPRs can be ranked using this method. More-
over, in case of incomplete IVHFPRs, we can first cater to the problem of incom-
pleteness according to theorem 1 and then rank it using the proposed method.

5. Conclusion and future direction

As number of alternatives in a decision making problem exceeds a certain level,
the complexity of the problem increases. With increasing level of difficulty, issues of
vagueness and uncertainty arise. In such situations expecting complete information
from all decision makers in the panel is an unrealistic assumption.

IVHFPRs are more flexible and realistic for decision modeling because they give
the expert flexibility to choose several subintervals of [0, 1] as IVHFEs. It has been
mentioned in the literature that additive transitivity is not a realistic methodology
to estimate missing information. In this article, we stress that transitivity can
not be used in its original form as it may lead to estimating preferences that are
not expressible; exceeding D[0, 1]. For this reason we propose additive transitivity
inspired method to estimate missing preferences. In order to make sure that these
intervals are members of D[0, 1], we define condition (cihr) that is presented to
decision makers who intend to propose incomplete information set. If the decision
maker with incomplete information abides by (cihr) then the missing preferences
are estimated and the estimated preferences are expressible which means that they
do not out lie the defined domain.

In literature, methods have been proposed that use additive transitivity directly
to estimate preferences. Once the estimated values outlie the domain, transfor-
mation functions are used to bring the outliers back to the domain. We stress
that this method voids originality of the decision maker’s opinions. It is better to
estimate preferences based on decision maker’s original information. The method
can be further improved by discussing options to consider when an expert fails
to satisfy condition (cihr).The other focus of this paper is on ranking of IVHF-
PRs. Once incompleteness has been taken care of, we propose a method to rank
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alternatives. With this ranking method, alternatives of both reciprocal and non-
reciprocal IVHFPRs can be ranked. However, problem of acyclicity may arise with
this ranking method and it still needs to be studied.

The drawback of this method is that it does not discuss situation of possible ties
among alternatives. For future directions, this work can be extended to interval-
valued multiplicative hesitant fuzzy preference relations. Condition (cihr) can be
relaxed and studied further for IVHFPRs. Ranking of these relations can be ex-
tended to include situations of possible ties among alternatives and methods can be
discussed to dissolve these ties. Moreover, applications of this work can be studied
in medical diagnosis and image processing.
Acknowledgements. Authors would like to express their sincere thanks to the
anonymous reviewers for their valuable suggestions.
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