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L-VALUED FUZZY ROUGH SETS

F. LI AND Y. YUE

Abstract. In this paper, we take a GL-quantale as the truth value table

to study a new rough set model—L-valued fuzzy rough sets. The three key
components of this model are: an L-fuzzy set A as the universal set, an L-

valued relation of A and an L-fuzzy set of A (a fuzzy subset of fuzzy sets). Then

L-valued fuzzy rough sets are completely characterized via both constructive
and axiomatic approaches.

1. Introduction

The concept of rough sets was originally proposed by Pawlak [23, 24] as a formal
tool for modelling and processing incomplete information in information systems
[2, 15, 17]. Fuzzy set theory[37], on the other hand, is a wide variety of techniques for
analyzing imprecise data. It seems therefore natural to combine methods developed
within both theories in order to construct hybrid structures capable to deal with
both aspects of incompleteness. Such structures, called fuzzy rough sets and rough
fuzzy sets, have been proposed in the literature [1, 3, 4, 5, 13, 14, 16, 19, 22, 30,
35, 36, 38].

Fuzzy rough sets were originally proposed by Dubois and Prade in [4, 5]. Com-
bined with rough sets, the three key components of this model are: a universal
set X (a crisp set), a fuzzy equivalence relation of X and a fuzzy set of X. Morsi
and Yakout [20] were among the first to study fuzzy rough sets based on a left-
continuous t-norm and its residual implication. In [26], Radzikowska and Kerre
defined a broad family of (I, T )-fuzzy rough sets which are determined by an ar-
bitrary implication I and a t-norm T . Wu et al [32, 33] discussed the axiomatic
approach of (S, T )-fuzzy rough sets. However, these fuzzy rough sets are based
on the unit interval [0,1]. As Goguen [7] pointed out that sometimes it may be
impossible to use the linearly ordered set [0,1] to represent degrees of membership
and the concept of L-fuzzy rough sets was then introduced. Many authors have ex-
plored and developed L-fuzzy rough sets. In [27], Radzikowska and Kerre proposed
fuzzy rough sets based on residuated lattices which were called L-fuzzy rough sets.
The three key components of L-fuzzy rough sets are: a universal set X, an L-fuzzy
equivalence relation of X and an L-fuzzy set of X, where L is a residuated lattice.
As a further discussion on this model, She and Wang [29] studied the axiomatic
approach of L-fuzzy rough sets. Topological structure corresponding to L-fuzzy
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rough approximation operators with emphasis to its ditopological was studied in
[6]. Ma and Hu [18] investigated topological structures of L-fuzzy rough sets and
the relationship between upper (resp. lower) sets and lower (resp. upper) L-fuzzy
rough approximation operators. Wu et al. [34]discussed the properties of L-fuzzy
rough sets based on complete residuated lattices. Wang and Hu [31] studied fuzzy
rough sets based on generalized residuated lattices.

To summarize, the core element of fuzzy rough sets is the fuzzy type of binary
relations. In order to study the logical and categorical basis of fuzzy sets, Höhle
[9, 10] proposed L-valued set as follows: Let P : X × X → L, if it satisfies the
following conditions: ∀x, y, z ∈ X,

(1) P (x, y) ≤ P (x, x) ∧ P (y, y);
(2) P (x, y) = P (y, x);
(3) P (x, y) ∗ (P (y, y)→ P (y, z)) ≤ P (x, z).

Then the pair (X,P ) is called an L-valued set. Obviously, P is an L-fuzzy equiv-
alence relation if P (x, x) = 1 (∀x ∈ X). Moreover, [0,+∞]op-valued sets (X,P ) is
a partial metric space in sense of [21] for L = [0,+∞] under the inverse order with
”+” as the product, which has important applications in theoretical computer sci-
ence. In 2012, Pu and Zhang [25] defined L-valued relation of L-fuzzy sets based on
the theory of quantaloid-enriched category. Moreover, L-fuzzy equivalence relation
is a special case of L-valued equivalence relation, and L-valued sets are just L-fuzzy
sets endowed with an L-valued equivalence relation. Hence, we can establish the
most general model of fuzzy rough sets based on L-valued relation. It needs to be
emphasized that mentioned above model of fuzzy rough sets is based on the three
key components: a universal set A(an L-set), an L-valued equivalence relation on
A and an fuzzy subset of A. It is also valuable to note that Šostak introduced the
general concept of an M -approximate system in [28]. As different from the present
work, M -approximate systems can be defined without referencing to the universal
set and without direct using of an L-relation but just on the basis of an integral
commutative cl-monoid. Moreover, Han et al in [8] provided an example to indi-
cate that an M -approximate system cannot be necessary obtained by means of an
L-relation. These results provide a new approach to study fuzzy rough set theory.

The aim of the present paper is to propose a new rough set model—L-valued
fuzzy rough sets, and to investigate it from both constructive and axiomatic ap-
proaches, where L is a GL-quantale. The structure of this paper is organized as
follows: In Section 2, we review some basic concepts and results which will be
used throughout the paper. In Section 3, the concept of L-valued fuzzy rough
approximation operators is introduced and the basic properties are discussed. Fur-
thermore, we discuss connections between some special L-valued relations and the
L-valued rough approximation operators. In Section 4, L-valued fuzzy approxi-
mation operators are defined in an axiomatic way, and it is established that there
is a one-to-one correspondence between the L-valued fuzzy rough approximation
operators and L-valued fuzzy relations.
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2. Preliminaries

In this section, we recall some basic notions of GL-quantales, L-valued relations
and the L-valued power set of an L-set.

Definition 2.1. [9, 12] A commutative quantale is a pair (L, ∗), where L is a
complete lattice with the top element 1 and the bottom element 0, and ∗ is a
commutative semigroup operation such that

α ∗
( ∨
j∈J

βj

)
=
∨
j∈J

α ∗ βj

for all α ∈ L and {βj | j ∈ J} ⊆ L. The pair (L, ∗) is called unital if there exists an
element e such that e ∗ α = α for all α ∈ L.

Given a commutative quantale (L, ∗), there is a binary operation →: L×L→ L
defined by

α→ β =
∨
{x ∈ L | α ∗ x ≤ β},

which is called the implication of ∗. Further, there two operations ∗ and → form
an adjoint pair in the sense that

α ∗ γ ≤ β ⇐⇒ γ ≤ (α→ β)

for all α, β, γ ∈ L.
Some basic properties of ∗ and → are listed in the next proposition.

Proposition 2.2. [9, 20] Let (L, ∗) be a commutative quantale. Then for all
α, β, γ, δ, αi ∈ L (i ∈ K), we have

(1) α→ 1 = 1 and 1→ α = α;
(2) α ≤ β =⇒ α→ β = 1;
(3) α ≤ β =⇒ α ∗ γ ≤ β ∗ γ, α→ γ ≥ β → γ, γ → α ≤ γ → β;
(4) (α→ β) ∗ (γ → δ) ≤ (α ∗ γ)→ (β ∗ δ);
(5) (α ∗ β)→ γ = α→ (β → γ);
(6) (α→ β) ∗ γ ≤ α→ (β ∗ γ);
(7) α→ (β → γ) = β → (α→ γ);
(8) (

∧
i∈K

αi)→ β ≥
∨
i∈K

(αi → β);

(9) (
∨
i∈K

αi)→ β =
∧
i∈K

(αi → β);

(10) β → (
∧
i∈K

αi) =
∧
i∈K

(β → αi);

(11) β → (
∨
i∈K

αi) ≥
∨
i∈K

(β → αi).

Proposition 2.3. [9, 10, 25] For a commutative unital quantale (L, ∗, e) with e
being the unit element, the following conditions are equivalent:

(1) ∀ α, β ∈ L, α ≤ β =⇒ α = β ∗ (β → α);
(2) ∀α, β, γ ∈ L, α, γ ≤ β =⇒ γ ∗ (β → α) = α ∗ (β → γ);
(3) ∀α, β ∈ L, α ≤ β =⇒ ∃γ ∈ L, α = β ∗ γ;
(4) ∀α, β ∈ L, α ∧ β = α ∗ (α→ β) and e = 1.
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A commutative unital quantale (L, ∗) is called divisible if it satisfies one of the
conditions (1)–(4) in Proposition 2.3. In this case, (L, ∗) is also called a GL-
quantale. Further, if a GL-quantale L still satisfies (a → 0) → 0 = a for all a ∈ L,
then L is an MV-algebra[20]. In this paper, we always assume that (L, ∗) is a
GL-quantale.

The concept of L-set was introduced by Goguen [7] as a generalization of the
notion of Zadeh’s fuzzy sets [37]. Let A0 be a non-empty set. An L-set A of
A0 is defined as a mapping from A0 to L. Let B : A0 −→ L be an L-set and
B(x) ≤ A(x) (∀x ∈ L). Then the mapping B is called an L-subset of A. The family
of all L-subsets of A is denoted by PA. For any α ∈ L, α̂ ∈ PA is defined by
α̂(x) = α if α ≤ A(x) and α̂(x) = 0 otherwise. For any B1, B2 ∈ PA, B1 ≤ B2 iff
B1(x) ≤ B2(x)(∀x ∈ L) (The “ ≤ ” is called pointwise order in fuzzy set theory).
And the union, intersection, ∗-intersection and →-implication of B1 and B2 are
defined as L-subsets of A by

(B1 ∨B2)(x) = B1(x) ∨B2(x);

(B1 ∧B2)(x) = B1(x) ∧B2(x);

(B1 ∗B2)(x) = B1(x) ∗B2(x);

(A ∧ (B1 → B2))(x) = A(x) ∧ (B1(x)→ B2(x)).

Let (L, ∗) be a GL-quantale. For all Bi ∈ PA, we write
∨
i∈I

Bi and
∧
i∈I

Bi to

denote the L-subsets of A given by

(
∨
i∈I

Bi)(x) =
∨
i∈I

Bi(x);

(
∧
i∈I

Bi)(x) =
∧
i∈I

Bi(x).

Definition 2.4. [25] Let A : A0 −→ L and B : B0 −→ L be two L-sets. An
L-valued relation P : A ⇀ B is a mapping P : A0 ×B0 −→ L such that

P (x, y) ≤ A(x) ∧B(y) (∀x ∈ A0, y ∈ B0).

For an L-valued relation P , a related L-valued relation P−1 is defined by P−1(x, y) =
P (y, x) for all x ∈ A0 and y ∈ B0, called the inverse of P .

Definition 2.5. [25] Let A be an L-set and let P : A ⇀ A be an L-valued relation
on A.

(1) P is called reflexive if A(x) ≤ P (x, x) for all x ∈ A0;
(2) P is called transitive if P (x, y)∗(A(y)→ P (y, z)) ≤ P (x, z) for all x, y, z ∈ A0;
(3) P is called symmetric if P (x, y) = P (y, x) for all x, y ∈ A0.

In Definition 2.5, if we take A = 1X , then P is an L-fuzzy relation. Hence, the
L-fuzzy relation is a special case of the L-valued relation. Further, Three properties
of L-valued relation are consistent with those of L-fuzzy relation.

Definition 2.6. [25] Let A be an L-set and let P : A ⇀ A be an L-valued relation
on A.
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(1) P is called an L-valued preorder on A if it is reflexive and transitive.
(2) P is called an L-valued equivalence on A if it is reflexive, transitive and

symmetric.

3. L-valued Fuzzy Rough Approximation Operators

In this section, we will define L-valued fuzzy rough sets and study the properties
of L-valued lower and L-valued upper fuzzy rough approximation operators with
respect to L-valued relations.

Definition 3.1. Let A : A0 −→ L be an L-set and let P be an L-valued relation on
A. We call the pair (A,P ) an L-valued approximation space. Define two mappings
PA, PA : PA −→ PA as follows: for all B ∈ PA and all x ∈ A0,

The operators PA, PA : PA −→ PA are respectively called the L-valued

PA(B)(x) =
∨
y∈A0

B(y) ∗ (A(y)→ P (y, x)),

PA(B)(x) =
∧
y∈A0

A(x) ∗ (P (y, x)→ B(y)).

upper and the L-valued lower fuzzy rough approximation operators of (A,P ), and
the pair (PA(B), PA(B)) is called an L-valued fuzzy rough set of B w.r.t. (A,P ).

Example 3.2. Let L = [0, 1] and ∗ = ∧. Then residuation implication of ∧ is
given by

α→ β =

{
1, α ≤ β,
β, others.

Let A be the identity mapping on L and define P : A→ A by P (x, y) = min{x, y}.
For B : [0, 1]→ [0, 1]

B(x) =

{
A(x), x ≤ 1/2,

0, others,

according to Definition 3.1, PA(B)(x) = 1/2 and PA(B)(x) = 0.

Proposition 3.3. For all a, b, c ∈ L, if a ≤ b, then b∧ [(b→ a)→ c] = b ∗ (a→ c).

Proof. According to Proposition 2.3(1) and (4), we have

b ∧ [(b→ a)→ c]
= b ∗ {b→ [(b→ a)→ c]}
= b ∗ {[b ∗ (b→ a)]→ c}
= b ∗ (a→ c).

�
According to Proposition 3.3, the L-valued lower fuzzy rough approximation

operator PA can be equivalently described as follows:

PA(B)(x) =
∧
y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ B(y)].



6 F. Li and Y. Yue

Remark 3.4. In Definition 3.1, if A = 1X and P is an L-fuzzy relation on A, then

P (B)(x) =
∨
y∈X

B(y) ∗ P (y, x),

P (B)(x) =
∧
y∈X

P (y, x)→ B(y).

Then the pair (P , P ) is precisely an L-fuzzy rough set in [26, 29].

The following theorem presents some basic properties of the L-valued upper
fuzzy rough approximation operator.

Let A : A0 −→ L be an L-set. For every y ∈ A0, we define a new L-set
Ay : A0 −→ L by

Ay(x) =

{
A(x), x = y,
0, x 6= y.

Obviously, Ay is an L-subset of A.

Theorem 3.5. Let A : A0 −→ L be an L-set and let P be an L-valued relation
on A. Then the L-valued upper fuzzy rough approximation operator PA has the
following properties: ∀B,Bi ∈ PA, i ∈ I, where I is the index set,

(UF1) PA(α̂ ∗ (β̂ → B)) = α̂ ∗ (β̂ → PA(B)) for all α, β ∈ L with α ≤ β and∨
x∈X B(x) ≤ β;
(UF2) PA(

∨
i∈I

Bi) =
∨
i∈I

PA(Bi);

(UF3) B1 ≤ B2 =⇒ PA(B1) ≤ PA(B2);

(UF4) PA(0̂) = 0̂;

(UF5) PA(A ∧ α̂) ≤ A ∧ α̂ for all α ∈ L;
(UF6) PA(Ay ∗ α̂)(x) = P (y, x) ∗ α̂ for all α ∈ L with Ay ∗ α̂ ∈ PA;
(UF7) PA(Ay)(x) = P (y, x).

Proof. (UF1) For any x ∈ A0, we have

PA(α̂ ∗ (β̂ → B))(x)

=
∨

y∈A0

(α̂ ∗ (β̂ → B))(y) ∗ (A(y)→ P (y, x))

= (β → α) ∗
∨

y∈A0

B(y) ∗ (A(y)→ P (y, x))

= (β → α) ∗ PA(B)(x)

= (α̂ ∗ (β̂ → PA(B)).

Hence, PA(α̂ ∗ (β̂ → B)) = α̂ ∗ (β̂ → PA(B)).

(UF2) For any x ∈ A0, we have

PA(
∨
i∈I

Bi)(x)

=
∨

y∈A0

(
∨
i∈I

Bi)(y) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

(
∨
i∈I

Bi(y)) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

∨
i∈I

(Bi(y) ∗ (A(y)→ P (y, x)))

=
∨
i∈I

∨
y∈A0

Bi(y) ∗ (A(y)→ P (y, x))

=
∨
i∈I

PA(Bi)(x).
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Hence, PA(
∨
i∈I

Bi) =
∨
i∈I

PA(Bi).

(UF3) It follows from Proposition 2.2(3) directly.

(UF5) For any x ∈ A0, we have

PA(A ∧ α̂)(x)
=

∨
y∈A0

(A ∧ α̂)(y) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

(α ∧A(y)) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

(A(y)→ α) ∗ P (y, x)

Since P (y, x) ≤ A(x) ∧A(y), we have∨
y∈A0

(A(y)→ α) ∗ P (y, x) ≤
∨
y∈A0

(A(y)→ α) ∗A(x) ≤ A(x)

and ∨
y∈A0

(A(y)→ α) ∗ P (y, x) ≤
∨
y∈A0

(A(y)→ α) ∗A(y) ≤ α.

Then
∨

y∈A0

(A(y)→ α) ∗ P (y, x) ≤ A(x) ∧ α. Hence, P (A ∧ α̂) ≤ A ∧ α̂.

(UF6) For any x ∈ A0, we have

PA(Ay ∗ α̂)(x)
=

∨
z∈A0

(Ay ∗ α̂)(z) ∗ (A(z)→ P (z, x))

= A(y) ∗ α ∗ (A(y)→ P (y, x))
= α ∗ [A(y) ∗ (A(y)→ P (y, x))]
= α ∗ P (y, x)

(UF7) By taking α̂ = 1̂ in (UF6), we have PA(Ay)(x) = P (y, x). �

The following theorem gives some basic properties of the L-valued lower fuzzy
rough approximation operator.

Let A : A0 −→ L be an L-set. For every y ∈ A0, α ∈ L and α ≤ A(y), we define
a new L-set A−yα : A0 −→ L by

(A−yα)(x) =

{
A(x), x 6= y,
α, x = y.

Obviously, A−yα is an L-subset of A.

Theorem 3.6. The L-lower fuzzy rough approximation operator PA has the fol-
lowing properties: ∀B,Bi, α̂ ∈ PA, i ∈ I, where I is the index set,

(LL1) PA(A ∧ (α̂→ B)) = A ∧ (α̂→ PA(B));
(LL2) PA(

∧
i∈I

Bi) =
∧
i∈I

PA(Bi);

(LL3) B1 ≤ B2 ⇒ PA(B1) ≤ PA(B2);
(LL4) PA(A) = A;
(LL5) A ∧ α̂ ≤ PA(A ∧ α̂);
(LL6) PA(A−yα)(x) = A(x) ∗ (P (y, x)→ α).
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Proof. (LL1) For any x ∈ A0, we have

PA(A ∧ (α̂→ B))(x)

=
∧

y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ (A(y) ∧ (α→ B(y)))]

=
∧

y∈A0

A(x) ∧ [A(x)→ P (y, x)→ A(y)] ∧ [(A(x)→ P (y, x))→ (α→ B(y))]

=
∧

y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ (α→ B(y))]

=
∧

y∈A0

A(x) ∗ [α→ (P (y, x)→ B(y))].

On the other hand,

[A ∧ (α→ PA(B))](x)

= A(x ∧ (α→
∧

y∈A0

[A(x) ∧ (A(x)→ P (y, x)→ B(y))]

= A(x ∧
∧

y∈A0

(α→ A(x)) ∧ (A(x)→ P (y, x)→ B(y))]

=
∧

y∈A0

A(x) ∧ (α→ [(A(x)→ P (y, x))→ B(y)])

=
∧

y∈A0

A(x) ∧ [A(x)→ P (y, x)→ (α→ B(y))]

=
∧

y∈A0

A(x) ∗ [α→ (P (y, x)→ B(y))].

Therefore, PA(A ∧ (α̂→ B)) = A ∧ (α̂→ PA(B)).

(LL2) For any x ∈ A0, we have

PA(
∧
i∈I

Bi)(x)

=
∧

y∈A0

A(x) ∧ [(A(x)→ P (y, x))→
∧
i∈I Bi(y)]

=
∧

y∈A0

A(x) ∧
∧
i∈I

[(A(x)→ P (y, x))→ Bi(y)]

=
∧

y∈A0

∧
i∈I

A(x) ∧ [(A(x)→ P (y, x))→ Bi(y)]

=
∧
i∈I

∧
y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ Bi(y)]

=
∧
i∈I

PA(Bi)(x).

Therefore, PA(
∧
i∈I

Bi) =
∧
i∈I

PA(Bi).

(LL3) It follows from Proposition 2.2(3) directly.

(LL5) For any x ∈ A0, we have

PA(A ∧ α̂)(x)

=
∧

y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ (A(y) ∧ α)]

=
∧

y∈A0

A(x) ∧ {[(A(x)→ P (y, x))→ A(y)] ∧ [(A(x)→ P (y, x))→ α]}

= {
∧

y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ A(y)]} ∧ {
∧

y∈A0

[(A(x)→ P (y, x))→ α]}

= PA(A)(x) ∧ {
∧

y∈A0

[(A(x)→ P (y, x))→ α]}

= A(x) ∧ {
∧

y∈A0

[(A(x)→ P (y, x))→ α]}

≥ A(x) ∧
∧

y∈A0

(1→ α)

= A(x) ∧
∧

y∈A0

α̂(x)

= (A ∧ α̂)(x).
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Therefore, A ∧ α̂ ≤ PA(A ∧ α̂).

(LL6) For any x ∈ A0, we have

PA(A−yα)(x)
=

∧
z∈A0

A(x) ∧ (P (z, x)→ (A−yα)(z))

= A(x) ∧ (P (y, x)→ α) ∧
∧

z 6=y∈A0

A(x) ∧ (P (z, x)→ A(z))

= A(x) ∧ (P (y, x)→ α).

Therefore, PA(A−yα)(x) = A(x) ∗ (P (y, x)→ α). �

In the following, let L be an MV-algebra. We can define the pseudo complement
of B, denoted by

∼B(x) = A(x) ∗ (B(x)→ 0) (∀x ∈ A0).

Obviously, for all x ∈ A0, we have ∼B(x) ≤ A(x). Thus ∼B is an L-subset of A.
Further, for all B1, B2 ∈ PA, we have

∼(B1 ∨B2) = ∼B1 ∨ ∼B2; ∼(B1 ∧B2) = ∼B1 ∧ ∼B2.

Then we have the following results.

Theorem 3.7. Let (A,P ) be an L-valued approximation space and let PA (resp.
PA) be the L-valued upper fuzzy rough approximation operator (resp. L-valued lower
fuzzy rough approximation operator). Then for every B ∈ PA,

∼PA(∼B) = PA(B);

∼PA(∼B) = PA(B).

Proof. For all B ∈ PA and x ∈ A0, we have

∼PA(∼B)(x)
= A(x) ∗ (PA(∼B)(x)→ 0)
= A(x) ∗ {[

∨
y∈A0

A(y) ∗ (B(y)→ 0) ∗ (A(y)→ P (y, x))]→ 0}

= A(x) ∗ [
∨

y∈A0

P (y, x) ∗ (B(y)→ 0)→ 0]

= A(x) ∗ (
∧

y∈A0

(P (y, x)→ B(y))

=
∧

y∈A0

A(x) ∗ (P (y, x)→ B(y))

= PA(B)(x).

Hence, ∼PA(∼B) = PA(B).
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For all B ∈ PA and all x ∈ A0, we have

∼PA(∼B)(x)
= A(x) ∗ (PA(∼B)(x)→ 0)
= A(x) ∗ [(

∧
y∈A0

A(x) ∗ [P (y, x)→ (A(y) ∗ (B(y)→ 0))])→ 0]

= A(x) ∗ [
∧

y∈A0

A(x) ∗ (P (y, x) ∗ (A(y)→ B(y))→ 0)→ 0]

= A(x) ∗ {
∨

y∈A0

A(x)→ [P (y, x) ∗ (A(y)→ B(y))]}

=
∨

y∈A0

A(x) ∧ [B(y) ∗ (A(y)→ P (y, x))]

=
∨

y∈A0

B(y) ∗ (A(y)→ P (y, x))

= PA(B)(x).

Hence, ∼PA(∼B) = PA(B). �

According to Theorem 3.7, the L-valued upper and lower fuzzy rough approx-
imation operators are dual w.r.t ∼ and can be described by each other. Hence,
every item in Theorem 3.6 is dual to that in Theorem 3.5 with the same number.

Remark 3.8. In Theorems 3.5, 3.6 and 3.7, if A = 1X and P is an L-fuzzy relation
on A, the corresponding results are known in[29, 31, 33].

The following theorem shows that some properties of L-valued fuzzy rough ap-
proximation operators derived from the L-valued approximation space (A,P ) can
be used to characterize some special properties of the L-valued relation P .

Theorem 3.9. Let (A,P ) be an L-valued approximation space. Then the following
statements are equivalent:

(1) P is reflexive;
(2) PA(B) ≤ B;
(3) B ≤ PA(B);
(4) P−1A(B) ≤ B;

(5) B ≤ P−1A(B).

Proof. (1) =⇒ (2) For all B ∈ PA and x ∈ A0,

PA(B)(x)
=

∧
y∈A0

A(x) ∧ [(A(x)→ P (y, x))→ B(y)]

= A(x) ∧ [(A(x)→ P (x, x))→ B(x)]
∧{

∧
y 6=x∈A0

A(x) ∧ [(A(x)→ P (y, x))→ B(y)]}

= B(x) ∧
∧

y 6=x∈A0

A(x) ∧ [(A(x)→ P (y, x))→ B(y)]

≤ B(x).

Therefore, PA(B) ≤ B.
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(2) =⇒ (1) Let B = A−xP (x,x). Then PA(B)(x) ≤ B(x), that is∧
z∈A0

A(x) ∗ (P (z, x)→ B(z)) ≤ B(x) = P (x, x),

and ∧
z∈A0

A(x) ∗ (P (z, x)→ B(z))

= [
∧

z 6=x∈A0

A(x) ∗ (P (z, x)→ A(z))] ∧ [A(x) ∗ (P (x, x)→ P (x, x)]

= A(x).

Then A(x) ≤ P (x, x). Hence, P is reflexive.
(1) =⇒ (3) For all B ∈ PA and x ∈ A0,

PA(B)(x)
=

∨
y∈A0

B(y) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

B(y) ∗ (P (y, y)→ P (y, x))

= B(x) ∨
∨

y 6=x∈A0

B(y) ∗ (P (y, y)→ P (y, x))

= B(x).

Hence, B ≤ PA(B).
(3) =⇒ (1) Let B = Ax, by (UF7), we have

A(x) = Ax ≤ PA(Ax)(x) = P (x, x).

Hence, P is reflexive.
(1) =⇒ (5) Let P be reflexive. For all x ∈ A0, P−1(x, x) = P (x, x) ≥ A(x), then

P−1 is reflexive.
Similarly, the statements of (1)⇐⇒ (4) and (1)⇐⇒ (5) are valid. �

Furthermore, according to (UF7) and (LL6), we have the following conclusion.

Theorem 3.10. Let (A,P ) be an L-valued approximation space. For all x, y ∈ A0,
the following statements are equivalent:

(1) P is symmetric;
(2) PA(Ax)(y) = PA(Ay)(x);
(3) [A(x)→ PA(A− y0)(x)]→ 0 = [A(y)→ PA(A− x0)(y)]→ 0.

According to Theorem 3.9, we can use the L-valued upper fuzzy rough approx-
imation operator to characterize the symmetry of P . But the construction of L-
valued lower fuzzy rough approximation operator is relatively complex. If A = 1X
and P is an L-fuzzy relation, then this conclusion is consistent with Proposition
3.9 in [27].

Theorem 3.11. Let (A,P ) be an L-valued approximation space. The following
statements are equivalent:

(1) P is symmetric;
(2) PA(PA(B)) ≤ B;
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(3) B ≤ PA(PA(B));

(4) P−1A(P−1A(B)) ≤ B;

(5) B ≤ P−1A(P−1A(B)).

Proof. (1) =⇒ (2) If P is symmetric, then for all B ∈ PA and all x ∈ A0, we have

PA(PA(B))(x)
=

∨
y∈A0

PA(B)(y) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

(
∧

z∈A0

A(y) ∗ (P (z, y)→ B(z))) ∗ (A(y)→ P (y, x))

≤
∨

y∈A0

(A(y) ∗ (P (x, y)→ B(x))) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

A(y) ∗ (A(y)→ P (y, x)) ∗ (P (x, y)→ B(x))

=
∨

y∈A0

P (y, x) ∗ (P (x, y)→ B(x))

≤
∨

y∈A0

B(x)

= B(x).

Hence, PA(PA(B)) ≤ B.
(2) =⇒ (1) Let B : A0 −→ L and B = Px0. For all y ∈ A0, B(y) = P (y, x0) ≤

A(y) ∧A(x0), then B ∈ PA. Hence, PA(PA(B)) ≤ B. For all y ∈ A0, we have

PA(PA(B))(y)→ B(y)
=

∨
x∈A0

PA(B)(x) ∗ (A(x)→ P (x, y))→ B(y)

=
∨

x∈A0

[
∧

z∈A0

A(x) ∗ (P (z, x)→ B(z))] ∗ (A(x)→ P (x, y))→ B(y)

≤
∧

z∈A0

(A(x0) ∗ (P (z, x0)→ P (z, x0))) ∗ (A(x0)→ P (x0, y))→ P (y, x0)

=
∧

z∈A0

A(x0) ∗ (A(x0)→ P (x0, y))→ P (y, x0)

= P (x0, y)→ P (y, x0).

Then, for all x0 ∈ A0, we have P (x0, y)→ P (y, x0) = 1. Hence, P is symmetric.
(1) =⇒ (3) If P is symmetric, then for all B ∈ PA and all x ∈ A0, we have

PA(PA(B))(x)
= A(x) ∧

∧
y∈A0

[(A(x)→ P (y, x))→ PA(B)(y)]

= A(x) ∧
∧

y∈A0

[(A(x)→ P (y, x))→ (
∨

z∈A0

B(z) ∗ (A(z)→ P (z, y)))]

≥ A(x) ∧
∧

y∈A0

(A(x)→ P (y, x))→ [B(x) ∗ (A(x)→ P (x, y))]

≥ A(x)
∧

y∈A0

B(x)

= B(x).

Therefore, B ≤ PA(PA(B)).
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(3) =⇒ (1) Let B = Ay. Then by (UF7), we have

PA(PA(Ay))(y)
= A(y) ∧

∧
x∈A0

[(A(y)→ P (x, y))→ PA(Ay)(x)]

≤ A(y) ∧ [(A(y)→ P (x, y))→ P (y, x)]
≤ (A(y)→ P (x, y))→ P (y, x).

Since A ≤ PA(PA(A)), we have P (x, y)→ P (y, x) = 1. Hence, P is symmetric.
Let P be symmetric. For all x, y ∈ A0, P−1(x, y) = P (y, x) = P (x, y) =

P−1(y, x), then P−1 is symmetric.
Similarly, the statements of (1)⇐⇒ (4) and (1)⇐⇒ (5) are valid. �

Theorem 3.12. Let (A,P ) be an L-valued approximation space. The following
statements are equivalent:

(1) P is transitive;
(2) PA(B) ≤ PA(PA(B));
(3) PA(PA(B)) ≤ PA(B);
(4) P−1A(B) ≤ P−1A(P−1A(B));

(5) P−1A(P−1A(B)) ≤ P−1A(B).

Proof. (1) =⇒ (2) If P is transitive, then for all B ∈ PA and all x ∈ A0, we have

PA(PA(B))(x)
= A(x) ∧

∧
y∈A0

[(A(x)→ P (y, x))→ PA(B)(y)]

= A(x) ∧
∧

y∈A0

{(A(x)→ P (y, x))→ [A(y) ∧
∧

z∈A0

((A(y)→ P (z, y))→ B(z))]}

= A(x) ∧
∧

y∈A0

{[(A(x)→ P (y, x))→ A(y)]

∧[(A(x)→ P (y, x))→
∧

z∈A0

((A(y)→ P (z, y))→ B(z))]}

= A(x) ∧
∧

y∈A0

{(A(x)→ P (y, x))→

[(A(x)→ P (y, x))→
∧

z∈A0

((A(y)→ P (z, y))→ B(z))]}

=
∧

y∈A0

∧
z∈A0

A(x) ∧ {(A(x)→ P (y, x))→

[(A(x)→ P (y, x))→ ((A(y)→ P (z, y))→ B(z))]}
=

∧
y∈A0

∧
z∈A0

A(x) ∗ (P (y, x)→

[(A(x)→ P (y, x))→ ((A(y)→ P (z, y))→ B(z))])

=
∧

y∈A0

∧
z∈A0

A(x) ∗ [P (y, x) ∗ (A(y)→ P (z, y))→ B(z)]

=
∧

y∈A0

∧
z∈A0

A(x) ∗ [P (z, y) ∗ (A(y)→ P (y, x))→ B(z)]

≥
∧

z∈A0

A(x) ∗ (P (z, x)→ B(z))

= PA(B)(x).

Hence, PA(B) ≤ PA(PA(B)).
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(2) =⇒ (1) For all B ∈ PA, we have PA(B) ≤ PA(PA(B)), then

PA(B)(x)→ PA(PA(B))(x) = 1 (∀x ∈ A0).

For all x ∈ A0, we have

PA(PA(B))(x)
=

∧
y∈A0

A(x) ∗ (P (y, x)→ PA(B)(y))

=
∧

y∈A0

A(x) ∗ (P (y, x)→ [A(y) ∧
∧

z∈A0

((A(y)→ P (z, y))→ B(z))])

=
∧

y∈A0

A(x) ∗ [(P (y, x)→ A(y)) ∧
∧

z∈A0

(P (y, x)→ ((A(y)→ P (z, y))→ B(z)))]

=
∧

y∈A0

∧
z∈A0

A(x) ∗ [P (z, y) ∗ (A(y)→ P (y, x))→ B(z)]

and
PA(B)(x) =

∧
z∈A0

A(x) ∗ (P (z, x)→ B(z)).

By PA(B)(x)→ PA(PA(B))(x) = 1 (∀x ∈ A0), we have

P (z, y) ∗ (A(y)→ P (y, x))→ P (z, x) = 1.

Hence P (z, y) ∗ (A(y)→ P (y, x)) ≤ P (z, x). That is to say, P is transitive.

(1) =⇒ (3) If P is transitive, then for all B ∈ PA and all x ∈ A0, we have

PA(PA(B)(x)
=

∨
y∈A0

PA(B)(y) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

∨
z∈A0

B(z) ∗ (A(z)→ P (z, y)) ∗ (A(y)→ P (y, x))

=
∨

y∈A0

∨
z∈A0

(A(z)→ B(z)) ∗ P (z, y) ∗ (A(y)→ P (y, x))

≤
∨

y∈A0

∨
z∈A0

(A(z)→ B(z)) ∗ P (z, x)

=
∨

z∈A0

B(z) ∗ (A(z)→ P (z, x))

= PA(B)(x).

Conversely, if (3) holds, then for all x, z ∈ A0, we have

P (x, z) = PA(Ax)(z)
≥ PA(PA(Ax))(z)
=

∨
y∈A0

P (x, y) ∗ (A(y)→ P (y, z)).

Hence, P is transitive.

If P is transitive, then for all x, y ∈ A0, we have

P−1(x, y) ∗ (A(y)→ P−1(y, z)
= P (y, x) ∗ (A(y)→ P (z, y))
= P (z, y) ∗ (A(y)→ P (y, x)
≤ P (z, x)
= P−1(x, z).
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Then P−1 is transitive. Similarly, the statements of (1) ⇐⇒ (4) and (1) ⇐⇒ (5)
are valid. �

When some special classes of L-valued relations are considered, we can obtain
the following conclusions.

Corollary 3.13. Let (A,P ) be an L-valued approximation space and P be an L-
valued preorder on A. Then the L-valued fuzzy rough approximation operators have
the following properties:

(1) PA(PA(B)) = PA(B);
(2) PA(PA(B)) = PA(B);
(3) P−1A(B) = P−1A(P−1A(B));

(4) P−1A(P−1A(B)) = P−1A(B).

Proof. It follows immediately from Theorems 3.5, 3.9 and 3.12. �

Corollary 3.14. Let (A,P ) be an L-valued approximation space. Then the follow-
ing statements are equivalent:

(1) P is an L-valued equivalence relation;
(2) PA(PA(B)) = PA(B);
(3) PA(PA(B)) = PA(B);

(4) P−1A(P−1A(B)) = P−1A(B);

(5) P−1A(P−1A(B)) = P−1A(B).

Proof. (1) =⇒ (2) Since P is transitive, for all B ∈ PA, we have

PA(B) ≤ PA(PA(B)).

Furthermore, by (UF3) and P is symmetric, we have

PA(PA(B)) ≤ PA(PA(PA(B))) ≤ PA(B).

Hence, PA(PA(B)) = PA(B).
(2) =⇒ (1) It follows immediately from Theorems 3.9, 3.11 and 3.12. �

4. Axiomatic Characterizations of L-valued Fuzzy Rough
Approximation Operators

In this section, we will study axiomatic characterizations of the L-valued fuzzy
rough approximation operators. It will be shown that the L-valued fuzzy rough
approximation operators can be characterized by a pair of L-fuzzy set operators
(H,D), which guarantees the existence of certain types of L-valued relations induc-
ing the same L-valued fuzzy rough approximation operators.

Firstly, we use the residuated implication of ∗ to construct the set-theoretic map-
pings H,D : PA → PA to characterize the L-valued fuzzy rough approximation
operators.

For a mapping G : PA → PA, we always consider the following two pairs of
conditions: ∀B,Bi ∈ PA, i ∈ I,

(H1) G(α̂ ∗ (β̂ → B)) = α̂ ∗ (β̂ → G(B)) for all α, β ∈ L with α ≤ β and∨
x∈X B(x) ≤ β,
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(H2) G(
∨
i∈I

Bi) =
∨
i∈I

G(Bi);

(D1) G(A ∧ (α̂→ B)) = A ∧ (α̂→ G(B)),

(D2) G(
∧
i∈I Bi) =

∧
i∈I G(Bi).

Theorem 4.1. Let H : PA → PA be a mapping. Then, there exists an L-valued
relation P on A such that H = PHA iff the mapping H satisfies (H1) and (H2).

Proof. The necessity is obvious, we here only prove the sufficiency. Let H satisfy
(H1) and (H2). By H we can define a mapping PH : A ⇀ A as follows:

PH(y, x) = H(Ay)(x) (∀x, y ∈ A0).

Now we prove PH is an L-valued relation.

(1) By H(Ay) ≤ A, we have P (y, x) ≤ A(x).

(2) According to (H1) and Ay = A(y) ∗ (A(y)→ Ay), we have

H(A(y) ∗ (A(y)→ Ay)) = A(y) ∗ (A(y)→ H(Ay)),

and
H(Ay) = H(Â(y) ∧Ay) = Â(y) ∧H(Ay) ≤ Â(y).

Then P (y, x) = H(Ay)(x) ≤ Â(y)(x) = A(y). Therefore, P (y, x) ≤ A(x) ∧A(y).

For all B ∈ PA and x ∈ A0, we have

PHA(B)(x)
=

∨
y∈A0

B(y) ∗ (A(y)→ PH(y, x))

=
∨

y∈A0

B(y) ∗ (A(y)→ H(Ay)(x))

=
∨

y∈A0

H(B(y) ∗ (A(y)→ Ay))(x)

= H(
∨

y∈A0

B(y) ∗ (A(y)→ Ay))(x)

= H(B)(x).

Hence, PHA = H. �

Dually, we have

Theorem 4.2. Let D : PA → PA be a mapping. Then, there exists an L-valued
relation P on A such that D = PDA iff the mapping D satisfies (D1) and (D2).

Proof. The necessity is obvious, we here only proof the sufficiency. Let D satisfy
(D1) and (D2). By the mapping D we can define an L-valued relation PD : A ⇀ A
as follows:

PD(y, x)
= [A(x)→ D(A−y0)(x)]→ 0
= A(x) ∧ [(A(x)→ D(A−y0)(x))→ 0] (∀x, y ∈ A0).
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Then for all B ∈ PA and x ∈ A0, we have

PDA(B)(x)
= A(x) ∧

∧
z∈A0

[(A(x)→ PD(z, x))→ B(z)]

= A(x) ∧
∧

z∈A0

{(A(x)→ ([A(x)→ D(A−z0)(x)]→ 0))→ B(z)}

= A(x) ∧
∧

z∈A0

[(D(A−z0)(x)→ 0)→ B(z)]

= A(x) ∧
∧

z∈A0

[(B(z)→ 0)→ D(A−z0)(x)]

=
∧

z∈A0

D(A ∧ ((B(z)→ 0)→ (A−z0)))(x)

= D(
∧

z∈A0

(A ∧ [(B(z)→ 0)→ (A−z0)]))(x)

= D(B)(x).

Hence, PDA = D. �

Theorem 4.1 (resp., 4.2) shows that a one-to-one correspondence can be con-
structed between the set-theoretic mappings H (resp., D) and L-valued upper fuzzy
rough approximation operators (resp., L-valued lower fuzzy rough approximation
operators).

In the following, we assume that L satisfies (a → 0) → 0 = a for all a ∈ L,
this is to say L is an MV-algebra. We will prove the L-valued upper fuzzy rough
approximation operator PHA and the L-valued lower fuzzy rough approximation
operator PDA are constructed by a same L-valued relation when (H,D) is a pair
of dual operators with respect to an order-reversing involution ∼, i.e.,

∼H(∼B) = D(B); ∼D(∼B) = H(B).

In this case, we say that H is dual to D.

Theorem 4.3. Let H be dual to D. Then PH = PD, where

PH(y, x) = H(Ay)(x);

PD(y, x) = [A(x)→ D(A−y0)(x)]→ 0 (∀x, y ∈ A0).

Proof. For any x, y ∈ A0, we have

PD(y, x)
= A(x) ∗ (∼H(∼(A−y0))(x)→ 0)
= A(x) ∗ [A(x) ∗ (H(∼(A−y0))(x)→ 0)→ 0]
= H(∼(A−y0))(x)

and
∼(A−y0)(z)

= A(x) ∗ ((A−y0)(z)→ 0)

=

{
A(z) ∗ (A(z)→ 0), z 6= y,

A(y), z = y
= Ay.

Then H(∼(A−y0))(x) = H(Ay)(x). Hence, PH = PD. �
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Theorem 4.3 is very important which indicates that L-valued upper fuzzy rough
approximation operator PHA and L-valued lower fuzzy rough approximation oper-
ator PDA can be constructed by a same L-valued relation.

In what follows, we discuss the relations between special L-valued relations and
mappings H,D.

Theorem 4.4. Let H : PA −→ PA be a mapping satisfying (H1) and (H2). Then
there exists an L-valued relation PH : A ⇀ A which is reflexive (resp., symmetric,
transitive) such that H = PHA iff H satisfies (HR) (resp., (HS), (HT)):

(HR) B ≤ H(B) (∀B ∈ PA);
(HS) H(Ay)(x) = H(Ax)(y) (∀x, y ∈ A0);
(HT) H(H(B)) ≤ H(B) (∀B ∈ PA).

Proof. The necessity and the sufficiency follow immediately from Theorems 3.8,
3.9, 3.11 and 4.1. �

Corollary 4.5. Let H : PA −→ PA be a mapping satisfying (H1) and (H2). Then
there exists an L-valued equivalence relation PH : A ⇀ A such that H = PHA iff
H satisfies (HR),(HS) and (HT).

Theorem 4.6. Let D : PA −→ PA be a mapping satisfying (D1) and (D2). Then
there exists an L-valued relation PD : A ⇀ A which is reflexive (resp., symmetric,
transitive) such that D = PDA iff D satisfies (DR) (resp. (DS), (DT)):

(DR) D(B) ≤ B (∀B ∈ PA);
(DS) [A(x)→ D(A−y0)(x)]→ 0 = [A(y)→ D(A−x0)(y)]→ 0 (∀x, y ∈ A0);
(DT) D(B) ≤ DD(B) (∀B ∈ PA).

Proof. The necessity and the sufficiency follow immediately from Theorems 3.8,
3.9, 3.11 and 4.2. �

Corollary 4.7. Let D : PA −→ PA be a mapping satisfying (D1) and (D2). Then
there exists an L-valued equivalence relation PD : A ⇀ A such that D = PDA iff D

satisfies (DR), (DS) and (DT).

Using the composition of H and D, we can get a pair of mapping HH, DD :
PA → PA. This pair is not equivalent to that of (H,D). This means that iterated
using of the approximation operators is not reducible. In fact, by the duality of D
and H, they can define two pairs of dual operators.

The operators HH and DD are dual to w.r.t. ∼, namely, DD = ∼HH(∼). By
the properties of H and D, it follows that HH and DD satisfy (H1), (H2), (D1)
and (D2):

(H1) HH(α̂ ∗ (β̂ → B)) = α̂ ∗ (β̂ → HH(B)),
(H2) HH(

∨
i∈I

Bi) =
∨
i∈I

HH(Bi);

(D1) DD(A ∧ (α̂→ B)) = A ∧ (α̂→ DD(B)),
(D2) DD(

∧
i∈I

Bi) =
∧
i∈I

DD(Bi).
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Therefore, we can use (HH,DD) to construct a pair of L-valued fuzzy rough
approximation operators (PHHA, PDDA). By using the same manner, we may ob-
tain many pairs of L-valued fuzzy approximation operators. Once an operator
is obtained by iterated using of H, the other operator can be obtained by iter-
ated using of D with the same length, for example the pair set-theoretic mappings
(HHHH,DDDD).

5. Conclusion

In this paper, we study L-valued fuzzy rough sets based on GL-quantale. By
using L-valued relations, we construct L-valued fuzzy rough set in both constructive
and axiomatic approaches. The classical L-fuzzy rough set is a special case of L-
valued fuzzy rough set. The results presented in this paper can hopefully provide
more insight into and a full understanding of fuzzy rough set theory. It may be
more useful for potential applications of rough set theory in the fuzzy environment
and help us to gain a general mathematical structures of the fuzzy approximation
operators. The analysis will facilitate further research in uncertain reasoning under
fuzziness.
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