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BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING
CONVEX SPACES

Z.Y. XIU AND B. PANG

ABSTRACT. Based on a completely distributive lattice M, base axioms and
subbase axioms are introduced in M-fuzzifying convex spaces. It is shown
that a mapping # (resp. ¢) with the base axioms (resp. subbase axioms) can
induce a unique M-fuzzifying convex structure with % (resp. ¢) as its base
(resp. subbase). As applications, it is proved that bases and subbases can be
used to characterize CP mappings and CC mappings between M-fuzzifying
convex spaces.

1. Introduction

Since Zadeh [19] introduced the concept of fuzzy sets, fuzzy set theory has been
applied to various branches of mathematics, such as fuzzy control, fuzzy topology,
fuzzy algebra and so on. In 1994, Rosa [8, 9] firstly generalized the notion of
axiomatic convex structures [13] (convex structures, in short) to the fuzzy case,
which is called an I-convex structure nowadays (I is the unit interval). Actually,
convex structures exist in so many mathematical fields, such as linear spaces [13],
lattices [13, 14], metric spaces and graphs [3, 12] and topological spaces [2, 5].
So the theory of convex structures deserved wide attention, especially in fuzzy
set theory. In 2009, Maruyama [4] generalized I-convex structures to L-convex
structures, where L is a completely distributive lattice. In the setting of L-convex
structures, Pang and Shi [6] offered a categorical approach to establish the relations
between L-convex structures and classical convex structures. Recently, Pang and
Zhao [7] presented several characterizations of L-convex structures.

Each L-convex structure on a nonempty set X can be considered as a family of
L-subsets of X satisfying several conditions. In a different way, Shi and Xiu [11]
introduced a new approach to the fuzzifications of convex structures from a logical
viewpoint. In this way, the new resulting concept is called M-fuzzifying convex
structures. Different from L-convex structures, each M-fuzzifying convex structure
on a nonempty set X is a mapping from 2% (the powerset of X) to M satisfying
three conditions. In the situation of M-fuzzifying convex structures, Shi and Li [10]
generalized the notion of restricted hull operators in classical convex spaces to M-
fuzzifying restricted hull operators and used it to characterize M-fuzzifying convex
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structures. Wu and Bai [15] defined M-fuzzifying JHC convex structures and M-
fuzzifying Peano interval spaces, and discussed their relations. Recently, Xiu and
Shi [16] introduced the concept of M-fuzzifying interval operators and established
its relations with M-fuzzifying convex structures from a categorical aspect.

Bases and subbases are two important concepts in the theory of convex struc-
tures, since they can be used to induce convex structures and to characterize proper-
ties of convex structures. In the fuzzy case, Shi and Xiu [11] proposed the concepts
of bases and subbases in the framework of M-fuzzifying convex structures. Inspired
by the axiomatic approach, we may ask that whether there are base axioms and
subbase axioms to characterize M-fuzzifying convex structures as the case in fuzzy
topological structures in [17, 18]. In this paper, we will consider base axioms and
subbase axioms in the framework of M-fuzzifying convex structures and investigate
their relations with M-fuzzifying convex structures.

2. Preliminaries

Throughout this paper, M denotes a completely distributive lattice. The small-
est element and the largest element in M are denoted by 1 and T, respectively.
The family of all subsets and all finite subsets of a nonempty set X are denoted
by 2% and 2jfm, respectively. The binary relation < in M is defined as follows:
for a,b € M, a < b if and only if for every subset D C M, the relation b < \/ D
always implies the existence of d € D with a < d. A complete lattice is completely
distributive if and only if b= \/{a € M : a < b} for each b € L [1].

For a nonempty set X, let 2% denote the powerset of X. For {Aj}jes C 2% we
say {A;};e is an up-directed subset of 2% provided that for each B, C € {4,};e,
there exists D € {A;};es such that B C D and C C D.

Let f : X — Y be amapping. Define f= : 2% — 2Y by f?(A) = {f(x) : v €
A} for each A € 2¥X and f< : 2Y — 2X by f<(B) = {z : f(x) € B} for each
Be2Y.

Definition 2.1. [11] A mapping € : 2X — M is called an M-fuzzifying convex
structure on X if it satisfies the following conditions:
(MYC1) €(0) =¢(X) = Tum;
(MYC2) If {4; : i € Q} C 2% is nonempty, then €' (N;cq Ai) = Nico €(Ai);
(MYC3) If {A; : i € Q} C 2% is nonempty and totally ordered by inclusion, then
(g(UlEQ Ai) 2 /\ieQ %(AZ)

If ¢ is an M-fuzzifying convex structure on X, then the pair (X, %) is called an
M-fuzzifying convex space.

If € satisfies (MYC1) and (MYC2), then € is called an M-fuzzifying closure
system on X and the pair (X, %) is called an M-fuzzifying closure space.

Proposition 2.2. [11] Let € : 2% — M be an M-fuzzifying closure system on

X. That is, € satisfies (MYC1) and (MYC2). Then the following conditions are

equivalent.

(MYC3) If {A; : i € Q} C 2% is nonempty and totally ordered by inclusion, then
C(Uieq Ai) 2 Niea €(Ai).
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(MYC3) If {4; : i € Q} C 2% is up-directed by inclusion, then %(Ujgﬂ Ap) >
/\ieQ %(Az)
Definition 2.3. [11] A mapping f : (X,%x) — (Y, %y ) between M-fuzzifying

convex spaces is called a convexity-preserving mapping(a CP mapping) provided
that €x (f<(B)) > 6y (B) for each B € 2Y.

Definition 2.4. [11] A mapping f : (X,%x) — (Y, %y) between M-fuzzifying
convex spaces is called a convex-to-convex mapping (a CC mapping) provided that
Ex(A) <Gy (f7(A)) for each A € 2%,

Definition 2.5. [11] Let ¢ : 2 — M be a mapping and define € : 2¥ — M
by

VA€ 2X, ¢(A) = \{2(4): ¢ < 7 € 9},

where $ denotes the family of all the M-fuzzifying convex structures on X. Then
€ is an M-fuzzifying convex structure on X and ¢ is called a subbase of the

M-fuzzifying convex space (X,%). In this case, we say that ¢ generates the M-
fuzzifying convex structure %.

Definition 2.6. [11] Let (X, %) be an M-fuzzifying convex space and % : 2% —
M be a mapping with 8 < @. Then 2 is called a base of (X, %) provided that

VA € 2%, €(A) = B (A),
where B (A) = VUair By=a Nrer Z(Br).

AEA
3. Base Axioms in M-fuzzifying Convex Spaces

In this section, we will provide an axiomatic approach to the concept of bases in
M-fuzzifying convex spaces. Then we will establish its relations with M-fuzzifying
convex spaces and use it to characterize CP mappings and CC mappings between
M-fuzzifying convex spaces.

Theorem 3.1. Let % : 2% — M be a mapping satisfying
(MYBL) Vijairp,—x Ao B(By) = T, B(0) = T
(MYB2) If {A; :i € Q} C 2% is nonempty, then
N\ #(A) < V N\ 2(By);
i€Q Uiier/\ Ba=MNicq Ai AEA
(MYB3) If {A; :i € Q} C 2% is up-directed by inclusion, then
A \/ N\ #(Bi;) < \/ N\ 2(By).
i€Q U?gJi B j=A; J€Ji Uiier/\ BA:U?Q& A; AEA
Then there is a unique M -fuzzifying convex structure on X with B as its base.
Proof. We prove this conclusion in two steps.
Step 1: Define % : 2% — M by ¢(A) = B (A) for each A € 2X. Next let
us verify that € satisfies (MYC1), (MYC2) and (MYC3)'.
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(MYC1) By (MYB1), we have
() = 2 0) > B0) =

and
¢X)=2Vx)= \/  N\2BB)=
UitgA By=X AEA

(MYC2) For {A; : i € Q} C 2%, take each a € M such that

a< N\CA) = N\24) =\ \ /\ 2(B;

i€Q i€Q 1€QUdW B; j=A; JjeJ;i

Then for each i € 2, there exists {B; ; : j € J;} € 2% such that U?ZJ = A

and for any j € J;, HB( m-) > a. By the completely distributive law, we have
dir .

Mica Ai = Nica Uje, Bi = Ufe]‘[iGQ 7. Niea Bis@- Obviously, (B ;) > a

for each f € [[;cq Ji and i 6 2. This implies that /\fGH L, Nica Z(Bi fiy) >

Moreover, it is trivial to check that {(\;,cq Bifi) : f € HzeQ Ji} is up-directed.

Then it follows that (., A; = U?ZHEQ 7. Nica Bis)- By (MYB2) and (MYB3),

a < AN A B(Biji)
fellicq Ji €2
< A ' V N #(Crr)
fellica Ji Uﬁ”éxf Crx=Nieq Bi.su) FEKs
_ -V A #(Dy)
USea DA:UL;ZHieQ J; Nica Bi s AEA
Y A #(Dy)
Ui\“gA Da=N;cq Ai AEA
= @(U)( n Al>
i€Q
i€Q
By the arbitrariness of a, we obtain A\, ., € (A;) < C((V;cq Ai)-
(MYC3)" For each up-directed set {A; : i € Q} € 2%, by (MYB3) and the
definition of ¥’, we have

N C(A) A v N #(Bi;)

i€Q S Y Udlr B;,j=A; i€Ji
v A B(Cy)
USEa Ca=UiEg Ai AEA
dir
= C(Uieq A)-
This shows € satisfies (MYC1)-(MYC3). Thus, ¢ is an M-fuzzifying convex struc-
ture on X.

Step 2: Suppose that €* is another M-fuzzifying convex structure on X with
A as its base. By Definition 2.6, we know €* = 2. This means €* = . O

IN

IN

Conversely, we will show for a given M-fuzzifying convex structure, its base
satisfies (MYB1)-(MYB3).
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Theorem 3.2. Let (X, %) be an M-fuzzifying convexr space with % as its base.
Then A satisfies (MYB1)-(MYB3).

Proof. By Definition 2.6, we know € = #). Now let us check that % satisfies
(MYB1)-(MBY3).
(MYB1) By (MYC1), it follows that

BD)=BDD)=¢0)=T

and

V A2B)=2X)>%¢X)=T.

Ugir, Ba=X A€A

MYB2) For any nonempty set {4; : 5 € Q} C 2%, since # < €, it follows that
( y pty

N\ 2A) < \€(A4) <e([) 4) = 29[ 4) = V N\ #(By).
i€ i€ i€ i€ Gr By=(N;cq Ai ANEA

(MYB3) For any up-directed set {4; : i € Q} C 2%, we have
A V A #Bij) < A V N\ €(Bij)

1€Q Ujgfi Bij=4; JjeJ; 1€Q U_?Zfi B j=4; JjeJ;

A v %(U?Z}i B; ;)
i€Q UL, Bij=As
= A %(4)
1€Q

dir
< Z(U A)

1€Q
- i N\ P(B»).

UR€a Ba=Uido As ASA

IN

|
By Theorems 3.1 and 3.2, we present the following definition.

Definition 3.3. A mapping % : 2X — M is called a base of some M-fuzzifying
convex space provided that Z satisfies (MYB1)-(MYB3).

Proposition 3.4. Let € be an M-fuzzifying convex structure on X. Then € is a
base of the M -fuzzifying convex space (X,%).

Proof. If € be an M-fuzzifying convex structure on X, then we first check that
¢ = €. On one hand, €“) > € holds obviously. On the other hand, for each
A € 2% it follows that

dir
v= \/ Aesy< V@ B)=%4)
Ugir, By=AAEA USZa Ba=A  A€A

This proves that € = €Y. Next we need only show that ¢ satisfies (MYB1)-
(MYB3). (MYB1) and (MYB2) are straightforward.
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(MYB3) For any up-directed set {4; : i € Q} C 2%, we have

dir

A V A €(Bi;) < A V ¢(U Bij)
ieQUir, B, ,—A; JET, i€QUir B, ,—A, I
= N\ C(A)
i€Q)
dir
< (U 4)
i€

dir
= w4
1€Q
-V A %B.
UTETA BA:U%?) A; A€A
O
Next we will show an M-fuzzifying closure system can be treated as a base for
an M-fuzzifying convex space. For this, we first give the following lemma.

Lemma 3.5. Suppose that A = Ufg;) A; = U:{é?z ;‘ngi B; ;. Define a mapping
o: 2‘;‘m — 2% by

VF € 21;1”” o(F) = ﬂ{BiJ :FC B}
Then {o(F): F € 2‘]?m} is up-directed and A = |J{o(F): F € 2}4in}'

Proof. Firstly, we check the rationality of the definition of o. For each F' € 2;}1-”,
by the up-directness, there must be some B;; such that I C B; ;. This means
{B;,;: F C B;;} is nonempty. Thus, the mapping ¢ is well defined.

Secondly, we show that © = {o(F): F € 2}‘-‘1-“} is up-directed. By the definition
of o, it is easy to see that o is order-preserving. Take o(F}),0(Fy) € ©. Since
Z?m is directed, there exists F3 € 2}4“1 such that F; C F3 and F; C F3. This
implies that o(F1) C o(F3) and o(Fy) C o(F3). Thus, ® = {o(F) : F € 2, } is
up-directed.

Finally, we verify that A = (J{o(F) : F € 2Jf‘in}. By the definition of o, it is
easy to see that

dir dir
NHe(F):Fe2p,c U By =A
i€EQ JET;

Further, since F' C o(F), it follows that
A=|J{F:Fe2f,} | Jo(F): Fe2f,).
Therefore, we obtain A = J{o(F): F € 2?1‘71}' O

Proposition 3.6. Let % : 2X — M be an M-fuzzifying closure system on X.
Then A is a base of some M -fuzzifying convex space.

Proof. Tt suffices to show that Z satisfies (MYB1)-(MYB3).
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(MYB1) Since & satisfies (MYC1), we have Z() = T and
V A28z (X)) =T.
USEn Ba=X A€A

(MYB2) For each nonempty set {A; : i € Q} C 2%, by (MYC2), we have

N\ B(Ai) < B[ A) < 2P 4i) = \ N 2(By).

i€Q ieQ ieQ U2, Ba=(,cq As AEA

(MYB3) For each up-directed set {A; : i € Q} C 2%, let a € M such that

a < /\ \/ /\ %(BIL'J‘).

1€Q U?Z,i B =4, JjeJ;

Then for any i € Q, there exists {B; ; : j € J;} C 2% such that U?ZJ,; B;j = A;

and for each j € J;, B(Bi;) > a. Let A = &% A = U, jgj B; ;. Define a

mapping o : 2}41.” — 2% as follows:

VF €24, o(F) = {Bi, : F C Bi,}.
By Lemma 3.5, we know {o(F) : F € 2?1»”} is up-directed and A = |J{o(F): F €
2‘?1-”}. For each F € 2?1-”, by (MYC2), it follows that

a< N\ #Bi;)<B( (| Bij)=Bo(F)).

FCB;,j FCB;,j

\V /\ #(B)) > a.

Ut By =g 4 AEA
By the arbitrariness of a, we obtain

AV N\ #(Bi;) < \/ N B(By),

1€Q U?&, B; j=A; J€Ji Ugir, Ba=Udy, A; AeA

This implies that

as desired. 0

Next we will aim to characterize Cp mappings and CC mappings between M-
fuzzifying convex spaces by using bases of M-fuzzifying convex spaces.

Proposition 3.7. Let f: (X, €x) — (Y, %y) be a mapping between M -fuzzifying
convex spaces and By be a base of (Y, 6y ). Then f: (X, ¢x) — (Y, 6y) is a CP
mapping if and only if €x (f<(B)) > By (B) for each B € 2Y.

Proof. Necessity. Suppose that f : (X,%x) — (Y,%y) is a CP mapping. Since
Gy > By, it follows that for each B € 2V,

Cx(f7(B)) 2 ¢v(B) = #y(B).
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Sufficiency. Since By is a base of (Y, %y ), we have for each B € 2V,

wB) = \/ N\ @B

Ugizy Br=B A

Voo A @B

USEs Ba=BAEA

Vo A Gx(f(By)

Ugzy Br=B AeA

Then it follows that
¢y (B)

IN

dir
= Vo oex(J remy)
Udir, Bx=B AEA
dir
= Vo oex(m (Y By)

Utir, Br=5 Aé

= Cx(f7(B))
This shows that f: (X, %x) — (Y, %y ) is a CP mapping. O
Proposition 3.8. Let f: (X, €x) — (Y,%y) be a mapping between M -fuzzifying

convez spaces and Bx be a base of (X,€x). Then [ : (X, €x) — (Y, 6y) is a
CC mapping if and only if Bx(A) < €y (f~(A)) for each A € 2%.

Proof. Necessity. Suppose that f : (X,%x) — (Y,%y) is a CC mapping. Since
Bx < Ex, it follows that for each A € 2%,

#x(A) < Cx(A) <Gy (f7(A)).

Sufficiency. Since %x is a base of (X, €x), we have for each A € 2%,
ex(A) = \/ N\ Zx(Ay).
(iieTA Ar=AXEA
Then it follows that
ox(A) =\ N\ x4y

Ufizy Ax=A AEA

V. AU A

UiierA Ax=AXEA

IN

dir
= Vo & i)

UiierA Ax=A AcA

dir
=V &7y
(iieTA Ax=A AEA

= G (f7(4).
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This shows that f: (X, €x) — (Y,%y) is a CC mapping. O

4. Subbase Axioms in M-fuzzifying Convex Spaces

In Definition 2.5, it is easy to see each mapping ¢ without any limitations can
be treated as a subbase of some M-fuzzifying convex spaces. This seems to be
abnormal. In this section, we will redefine subbases of an M-fuzzifying convex space
and provided an axiomatic approach to the definition of subbases in M-fuzzifying
convex spaces. Then we will investigate the relations between axiomatic subbases
and M-fuzzifying convex spaces. Moreover, we will present a characterization of
CP mappings between M-fuzzifying convex spaces by means of axiomatic subbases.

Definition 4.1. Let (X, %) be an M-fuzzifying convex space and ¢ : 2% — M be
a mapping. Then ¢ is called a subbase of € provided that % : 2%X — M defined
by
vBe2X, #(B)= \/ N\«(B)
Nico Bi=B i€

is a base of €.

Remark 4.2. Definition 4.1 implies Definition 2.5. Suppose that ¢ is a subbase
of (X,%) in the sense of Definition 4.1, then £ defined in Definition 4.1 is a base
of €. Now let us show that ¢ is a subbase of (X, %) in the sense of Definition 2.5.

Take each M-fuzzifying convex space (X, 2) with ¢ < 2. Then for each B € 2%,
it follows that
#(B) = \/ /\@(Bz‘) < \/ /\@(Bi) < \/ -@(ﬂ B;) = 9(B).
Nico Bi=Bi€Q Nico Bi=Bi€Q Nico Bi=B i€Q
and further for each A € 2%,
dir
ca= \/ AzAa)< V A2uan< 2 4)=204)
Uje, Aj=Aded Uje, Aj=AJed Uje, A;=A J&J
By the arbitrariness of 2, we know ¢ is a subbase of (X, %) in the sense of Definition
2.5.

In the sequel, we will adopt Definition 4.1 as the definition of subbase of M-
fuzzifying convex spaces.

Theorem 4.3. Let ¢ : 2% — M be a mapping satisfying
(MYSBI1) Vnieﬂ A;=0 /\ieQ p(Ai) =T,
(MYSB2) \/U?g, A;=X Njes \/m Gi=Ay /\ielj p(Aji) =T.
Then there is a unique M -fuzzifying convex structure on X with ¢ as its subbase.

Proof. Define % : 2%X — M as follows:
vBe2X, #B)= \/ N\ B
ﬂq‘,esz B;=BieQ
Then it suffices to show that % satisfies (MYB1)-(MYB3).

icly A
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(MYB1) By (MYSB1) and (MYSB2), it is straightforward.
(MYB2) For each nonempty {B; : i € Q} C 2% let a be any element in M with

the property of
a< \NBB)=/A '\ N\ eGiy).

ieQ i€Q N, Gij=Bij€di

Then for each i € (2, there exists a set {G, ; : j € J;} C 2% such that N{G,; :j €
Ji} = B; and for each j € J;, ¢(G; ;) > a. Then it follows that

(Bi=()[)Gii=(Gij:icQje}
i€Q ieQjed;

Let {Gi,j S Q,] € Jz} = {B)\ DA E A} Then niEQB’i = ﬂ)\eAB/\ and
@(By) > a for each A € A. This implies that

\V N\ #(D»)

UTETA DA:miesz B; A€A

> B((B) = \V N\ #(C)
i€Q Naca Cx=Nicq Bi A€A
> A\ eB)za
AEA

By the arbitrariness of a, we obtain )\, #(4;) < \/U;i\ier/\ Ba=Meq B: Axea Z(By).
(MYB3) For any up-directed set {4; : i € Q} C 2% we need to prove that

AV AzBao< N A\&B

i€Q U;“ET,L B j=A;J€Ji (/{ZA BA:U?&) A; ANEA

That is,
AV A V A e(Gijr)
1€Q U?Z;i B;,;j=A; I€Ji ﬂkeK{”j Gi,j,x=B; ; k€K, j
< V A V A ¢(Dxs).

USZ Ba=UJEG, A AEA ﬂ—yer/\ Dy, =Bx 7€l

Let a be any element in M with the property of

<N VA V N #(Cis).

1€Q U;?gh B; j=A;i€Ji ﬂkekm Gi,j k=B j kEK; ;

Then for each i € (2, there exists an up-directed set {B, ; : j € J;} with U?ZJi B;; =
A; and for each j € J;, there exist aset {G,  x : k € K; ;} with ﬂkeKi ; G,k = Bi;j

such that (G, ;) > a for each k € K; ;. Let

dir dir dir dir dir

A:UAi:U UBi’j:U U ﬂ Gijk-

1€Q i€eQjed; ieQjed; k‘EK,;,j
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Then define a mapping o : me — 2% as follows:
VF €2}, o(F)=(\{Bi;:F CB;;}.

By Lemma 3.5, we know {o(F) : F € 2}4m} is up-directed and A = |J{o(F) : F €
2Jf‘in}. Moreover, take each F' € 2’;‘m. It follows that

O'(F) = ﬂ Bi,j = m ﬂ G¢,j7k = ﬂ Gi,j,k-

FgBi,j FgBi,j kGKi,j FgBi,j,kGKw'
Since Uij;z;‘m o(F)= Ufgg A;, we have
OV A ®BY)
USEs Ba=U{go, A
=V Nea V A #(Dxry)
UTETA BA:Ugg;z A; ﬂ_yer)\ Dy ,=Bx Y€l

> A V A ¢(Gijk)

Fe2d, Npce, jkex, ; Guin=o(F) k€K ;
> a.

By the arbitrariness of a, we obtain

AV AzBao< N A\&BY

1€Q U?Z;i B, j=A; JjEJ; (ileTA Bx:Ung A; AEA

By Theorem 3.1, there is a unique M-fuzzifying convex structure ¢ = 2 with
A as its base. That is, there is a unique M-fuzzifying convex structure € with ¢
as its subbase, as desired. O

Theorem 4.4. Let (X, %) be an M-fuzzifying convexr space with ¢ as its subbase.
Then ¢ satisfies (MYSB1) and (MYSB2).

Proof. By Definition 4.1, it is straightforward and the proof is omitted. ([l

By Theorems 4.3 and 4.4, we present the axiomatic definition of subbases of
M-fuzzifying convex spaces.

Definition 4.5. A mapping ¢ : 2X — M is called a subbase of some M-fuzzifying
convex space provided that ¢ satisfies (MYSB1) and (MYSB2).

The following result is obvious and the proof is omitted.

Proposition 4.6. (1) If (X,€) is an M-fuzzifying conver space, then € is a
subbase of (X,€).

(2) If (X,€) is an M-fuzzifying convex space with % as its base, then % is a
subbase of (X,F).

Next we will characterize CP mappings between M-fuzzifying convex spaces by
means of subbases of M-fuzzifying convex spaces.

Proposition 4.7. Let f: (X, 6x) — (Y, 6y) be a mapping between M -fuzzifying

conver spaces and @y be a subbase of (Y, 6y ). Then f: (X, €x) — (Y,%6y) is a
CP mapping if and only if €x(f<(B)) > ¢y (B) for each B € 2Y.
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Proof. Since @y is a subbase of (Y, %y ), we know By : 2¥ — M defined by

vBe2', #y(B)= \/ N\ ev(B)
nieﬂ B;=B i€

is a base of €y . Next let us show the necessity and sufficiency.

Necessity. It follows from the definition of By that €y (B) > By (B) > ¢y (B)
for each B € 2Y. Further, since f : (X, %x) — (Y, %y) is a CP mapping, it follows
that for each B € 2¥, €x(f(B)) > %y (B). This implies that €x(f(B)) >
¢y (B) for each B € 2Y.

Sufficiency. Take each B € 2Y. Then

Vo NAevB)

Nico Bi=B i€

Vo AU (B)

Nico Bi=Bi€Q

=V a8

Nico Bi=B  i€Q
=\ eU()BY)
Nico Bi=B i€Q

= ex(f7(B)).

Since Ay is a base of (Y, 6y ), it follows from Proposition 3.7 that f: (X, €x) —
(Y, %y) is a CP mapping. |

By (B)

IN

5. Conclusions

In this paper, we provided an axiomatic approach to bases and subbases in M-
fuzzifying convex spaces. Concretely, we gave the axiomatic conditions to define
bases and subbases of M-fuzzifying convex spaces. From the axiomatic bases and
subbases, we can induce a unique M-fuzzifying convex structure. Also, we show
that bases can be used to characterize both CP mappings and CC mappings, and
subbases can be used to characterize CP mappings.

In the theory of classical convex structures, join spaces and product spaces are
both defined by means of subbases. Following the subbases in this paper, we will
consider join spaces and product spaces in the framework of M-fuzzifying convex
spaces in the future.
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