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SOME PROPERTIES OF UNCERTAIN INTEGRAL

C. YOU AND N. XIANG

Abstract. Uncertainty theory is a mathematical methodology for dealing
with non-determinate phenomena in nature. As we all know, uncertain pro-

cess and uncertain integral are important contents of uncertainty theory, so

it is necessary to have deep research. This paper presents the definition and
discusses some properties of strong comonotonic uncertain process. Besides,

some useful formulas of uncertain integral such as nonnegativity, monotonicity,

intermediate results are studied.

1. Introduction

In the world, there are plenty of problems that are difficult to be described ex-
actly. Randomness, fuzziness and uncertainty appear frequently in a system. To
solve these problems, probability theory, fuzzy mathematics and rough set the-
ory produced one after another. In 1933, Kolmogorov founded probability theory
to settle random matters, which has been applied widely in many diverse subject
areas. In order to describe fuzzy phenomena, the definition of fuzzy set was intro-
duced by Zadeh [28] in 1965. Then Zadeh [29] presented possibility measure to deal
with fuzzy events, Yager [21] and Dubois [2] have dedicated themselves in this study.
However, possibility measure has no self duality, thus Liu and Liu [5] initiated a self
duality credibility measure in 2002. As a generalization of randomness and fuzzi-
ness, the uncertainties of imprecise events can be considered by uncertainty theory
which was given by Liu [6] for the first time and refined by Liu [10]. Thereafter,
many researchers have conducted the thorough research and plenty of explorations
were undertaken. In 2007, Liu [6] introduced the concepts of uncertain variable
and uncertain distribution. In 2009, Gao [3] studied the properties of continuous
uncertain measure. The convergence of uncertain sequences was discussed by You
[23]. You and Yan [27] introduced the p-distance between two uncertain variables
and the relationships among different convergences were discussed by You and Yan
[24]. Prior to today, uncertainty theory has developed into an axiomatic system,
which has been applied to uncertain programming ([8], [12, 13]), uncertain risk and
uncertain reliability ([11], [17]), and etc.

In order to describe dynamic system with different uncertainties, stochastic pro-
cess, fuzzy process, uncertain process (initiated by Liu [7]) were introduced, re-
spectively. As we know, many practical matters can be abstracted as a differential
equation. And to solve the equation, corresponding integral needs to be calculated.
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Classic integration and differentiation have been widely studied and used in many
areas of natural and social sciences. The reader interested to stochastic differential
and integral may consult [16, 19]. As for fuzzy integrals, there are Choquet fuzzy
integral and Sugeno fuzzy integral (see [20], [18], [4]), which are all integrals with
respect to variable, another type of fuzzy integral, an integral of a fuzzy process
with respect to a fuzzy process was presented by Liu [7]. Then it was extended to
the case of complex fuzzy integral (You and Wang [25]) and general fuzzy integral
(You, Ma and Huo [26]). As a generalization of stochastic integral and fuzzy inte-
gral, uncertain integral was introduced by Liu [7]. Later, Liu [15] deduced the linear
property of uncertain integral and presented the fundamental theorem of uncertain
calculus, then the formulas of chain rule, change of variables, and integration by
parts were derived. Applying uncertain integral, uncertain differential equation has
been studied by many researches (see [7], [1], [9]).

Considering integration and differentiation play very important roles in the fun-
damental theory of mathematics, the main purpose of this paper is to study the
properties of uncertain integral. The rest of this paper is organized as follows.
Section 2 will recall some basic definitions and properties of uncertain process and
uncertain integral. Then the concept of strong comonotonic uncertain process will
be introduced in Section 3, furthermore, some properties of strong comonotonic
uncertain process and uncertain integral will be discussed. In the last section, a
brief conclusion is given.

2. Preliminaries

In this section, some basic knowledge which will be used in this paper are re-
viewed.

In order to measure uncertain event, uncertain measure and uncertain variable
were defined.

Definition 2.1. (Liu [6]) Let L be a σ-algebra on a nonempty set Γ. A set function
M: Γ→ [0, 1] is called an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom) M{Γ} = 1.
Axiom 2: (Duality Axiom) M{Λ}+M{Λc} = 1, for any event Λ ⊂ Γ.
Axiom 3: (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2,

· · · ⊂ Γ, we have

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

Definition 2.2. (Liu [6]) Let Γ be a nonempty set, L a σ-algebra over Γ, and M
an uncertain measure. Then the triplet (Γ,L,M) is called an uncertainty space.

Besides, the product uncertain measureM on the product σ-algebra L is defined
by the following product axiom.

Axiom 4: (Product Axiom, Liu [9]) Let (Γk,Lk,Mk) be uncertainty spaces, for
k = 1, 2, · · · . The product uncertain measureM is an uncertain measure satisfying

M{
∞∏
k=1

Λk} =

∞∧
k=1

Mk{Λk},
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where Λk are arbitrarily chosen events from Lk, for k = 1, 2, · · · , respectively.

Definition 2.3. (Liu [6]) An uncertain variable ξ is a measurable function from
an uncertainty space (Γ,L,M) to the set of real numbers, i.e., for any Borel set B
of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}
is an event.

Definition 2.4. (Liu [6]) The uncertain distribution Φ of an uncertain variable ξ
is defined by

Φ(x) =M{ξ ≤ x},
for any real number x.

Next, we recall some knowledge of uncertain process and Liu integral as follows.

Definition 2.5. (Liu [7]) Let T be an index set and let (Γ,L,M) be an uncertainty
space. An uncertain process is a function Xt(γ) from T × (Γ,L,M) to the set of
real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers
at each time t .

Definition 2.6. (Liu [14]) The uncertainty distribution Φt(x) of an uncertain pro-
cess Xt is defined as

Φt(x) =M{Xt ≤ x}
for each time t and any number x.

Theorem 2.7. (Liu [15]) Let Xt be an uncertain process with uncertainty distribu-
tion Φt(x), and let f(x) be a measurable function. Then f(Xt) is also an uncertain
process.

Furthermore, (i) if f(x) is a strictly increasing function, then f(Xt) has an
uncertainty distribution

Ψt(x) = Φt(f
−1(x));

(ii) if f(x) is a strictly decreasing function and Φt(x) is continuous with respect to
x, then f(Xt) has an uncertainty distribution

Ψt(x) = 1− Φt(f
−1(x)).

Definition 2.8. (Liu [7]) Let Xt be an uncertain process. Then for each γ ∈ Γ,
the function Xt(γ) is called a sample path of Xt.

Definition 2.9. (Liu [9]) An uncertain process Ct is said to be a Liu process if
(i) Ct = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Ct+s − Ct is a normal uncertain variable with expected

value 0 and variance t2.

Definition 2.10. (Liu [9]) Let Xt be an uncertain process and let Ct be a Liu
process. For any partition of closed interval [a, b] with a = t1 < t2 < · · · < tk+1 = b,
the mesh is written as

∆ = max
1≤i≤k

| ti+1 − ti | .
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Then Liu integral of Xt with respect to Ct is defined as∫ b

a

XtdCt = lim
∆→0

k∑
i=1

Xti · (Cti+1
− Cti),

provided that the limit exists almost surely and is finite. In this case, the uncertain
process Xt is said to be integrable.

Theorem 2.11. (Liu [15]) If Xt is an integrable uncertain process on [a, b], then
it is integrable on each subinterval of [a, b]. Moreover, if c ∈ [a, b], then∫ b

a

XtdCt =

∫ c

a

XtdCt +

∫ b

c

XtdCt.

3. The Properties of Uncertain Integral

Some concepts and theorems about Liu integral will be discussed in this section.
First, we introduce the definition of strong comonotonic uncertain process.

Definition 3.1. Let Xt be a continuous and bounded uncertain process, Ct a Liu
process. If Xt and Ct have the same monotonicity in [a, b], and Xb > Xa, Cb > Ca,
then we say Xt is a strong comonotonic uncertain process with respect to Ct in
[a, b], or Xt and Ct are said to be strong comonotonic in [a, b], i.e.,

i)(Xt1 −Xt2)(Ct1 − Ct2) ≥ 0, for any [t1, t2] ⊂ [a, b],
ii)Xb > Xa, Cb > Ca.

Next, some properties of strong comonotonic uncertain process are illustrated as
follows.

Theorem 3.2. If uncertain processes Xt, Yt and Liu process Ct are strong comono-
tonic in [a, b], then uncertain process Xt+Yt and Liu process Ct are strong comono-
tonic in [a, b].

Proof. Since uncertain processes Xt, Yt and Liu process Ct are strong comonotonic
in [a, b], we get

(Xt1 −Xt2)(Ct1 − Ct2) ≥ 0,

(Yt1 − Yt2)(Ct1 − Ct2) ≥ 0,

for any [t1, t2] ⊂ [a, b], and Xb > Xa, Yb > Ya, Cb > Ca. Then

[(Xt1 + Yt1)− (Xt2 + Yt2)](Ct1 − Ct2) = [(Xt1 −Xt2) + (Yt1 − Yt2)](Ct1 − Ct2)

= (Xt1 −Xt2)(Ct1 − Ct2)

+ (Yt1 − Yt2)(Ct1 − Ct2).

Thus
[(Xt1 + Yt1)− (Xt2 + Yt2)](Ct1 − Ct2) ≥ 0,

for any [t1, t2] ⊂ [a, b] and Xb+Yb > Xa+Ya, Cb > Ca. Therefore, uncertain process
Xt + Yt and Liu process Ct are strong comonotonic in [a, b]. �

Theorem 3.3. If uncertain process Xt and Liu process Ct are strong comonotonic
in [a, b], then for any real number k > 0, uncertain process kXt and Liu process Ct
are strong comonotonic in [a, b].
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Proof. Since uncertain process Xt and Liu process Ct are strong comonotonic in
[a, b], we have

(Xt1 −Xt2)(Ct1 − Ct2) ≥ 0,

for any [t1, t2] ⊂ [a, b], and Xb > Xa, Cb > Ca. Considering

(kXt1 − kXt2)(Ct1 − Ct2) = k(Xt1 −Xt2)(Ct1 − Ct2),

then for any [t1, t2] ⊂ [a, b], and k > 0, we have (kXt1 − kXt2)(Ct1 −Ct2) ≥ 0, and
kXb > kXa, Cb > Ca. Thus uncertain process kXt and Liu process Ct are strong
comonotonic in [a, b], for any k > 0. �

Remark 3.4. If uncertain process Xt, Yt and Liu process Ct are strong comono-
tonic in [a, b], then for any real numbers k1 > 0, k2 > 0, uncertain process k1Xt +
k2Yt and Liu process Ct are strong comonotonic in [a, b].

Theorem 3.5. Let uncertain process Xt and Liu process Ct be strong comonotonic
in [a, b] and let f(x) be an increasing function. Then f(Xt) is also an uncertain
process. Furthermore, f(Xt) and Liu process Ct are strong comonotonic in [a, b].

Proof. By Theorem 2.7, f(Xt) is an uncertain process. By the property of com-
pound function, f(Xt) and Liu process Ct are strong comonotonic in [a, b]. �

Considering the importance of Liu integral, next, we will discuss some useful
properties of Liu integral.

Theorem 3.6. (Nonnegativity) Let Liu integrable uncertain process Xt and Liu

process Ct be strong comonotonic in [a, b]. If Xt ≥ 0, then
∫ b
a
XtdCt ≥ 0.

Proof. Since Liu integral
∫ b
a
XtdCt exists, whether closed interval [a, b] is even par-

titioned or not, the results are the same. Let a = t1 < t2 < · · · < tk+1 = b,
and

|Ct2 − Ct1 | = |Ct3 − Ct2 | = · · · = |Ctn+1
− Ctn |.

Denote ∆ = max
1≤i≤n

|ti+1 − ti|,∆Ct = Cti+1 − Cti . By the definition of Liu integral,∫ b

a

XtdCt = lim
∆→0

n∑
i=1

Xti · (Cti+1
− Cti)

= lim
∆→0,∆Ct≥0

m∑
i=1

Xti · (Cti+1
− Cti) + lim

∆→0,∆Ct≤0

k∑
j=1

Xtj · (Ctj+1
− Ctj )

= lim
∆→0,∆Ct≥0

m∑
i=1

Xti∆Ct + lim
∆→0,∆Ct≤0

k∑
j=1

Xtj∆Ct,

where m + k = n. Since Xt and Ct are strong comonotonic, we obviously have
Xb > Xa, for each Xtj , there exists Xti corresponding to Xtj . Thus

lim
∆→0,∆Ct≥0

m∑
i=1

Xti∆Ct + lim
∆→0,∆Ct≤0

k∑
j=1

Xtj∆Ct = lim
∆→0,∆Ct≥0

l∑
ij=1

Xij∆Ct,

where ∆Ct > 0, l = m− k. Since Xt ≥ 0, Xij ≥ 0. The theorem is verified. �
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Theorem 3.7. (Monotonicity) Let Xt, Yt be Liu integrable uncertain processes,
and let uncertain process Yt − Xt and Liu process Ct be strong comonotonic in
[a, b]. If Yt ≥ Xt, then ∫ b

a

YtdCt ≥
∫ b

a

XtdCt.

Proof. Since Yt ≥ Xt, we have Yt −Xt ≥ 0. It follows from Theorem 3.6 that∫ b

a

YtdCt −
∫ b

a

XtdCt =

∫ b

a

(Yt −Xt)dCt ≥ 0.

That is ∫ b

a

YtdCt ≥
∫ b

a

XtdCt.

The theorem is proved. �

Theorem 3.8. Let Liu integrable uncertain process Xt and Liu process Ct be strong
comonotonic in [a, b]. If there exist real numbers m,M such that m ≤ Xt ≤ M ,
then

m(Cb − Ca) ≤
∫ b

a

XtdCt ≤M(Cb − Ca).

Proof. Since m ≤ Xt ≤M , it follows from Theorem 3.5 that∫ b

a

mdCt ≤
∫ b

a

XtdCt ≤
∫ b

a

MdCt.

Furthermore, ∫ b

a

mdCt = m(Cb − Ca),

∫ b

a

MdCt = M(Cb − Ca).

Then the theorem is verified. �

Theorem 3.9. If uncertain processes Yt, Xt and Liu process Ct are strong comono-
tonic in [a, b], then ∫ b

a

(Yt ∨Xt)dCt ≥
∫ b

a

YtdCt ∨
∫ b

a

XtdCt.

Proof. Since Yt ∨Xt ≥ Xt, Yt ∨Xt ≥ Yt, by Theorem 3.7∫ b

a

(Yt ∨Xt)dCt ≥
∫ b

a

YtdCt,∫ b

a

(Yt ∨Xt)dCt ≥
∫ b

a

XtdCt.

Then ∫ b

a

(Yt ∨Xt)dCt ≥
∫ b

a

YtdCt ∨
∫ b

a

XtdCt.

�
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Corollary 3.10. If uncertain processes Yt, Xt and Liu process Ct are strong comono-
tonic in [a, b], then ∫ b

a

(Yt ∧Xt)dCt ≤
∫ b

a

YtdCt ∧
∫ b

a

XtdCt.

Proof. Since Yt ∧Xt ≤ Xt, Yt ∧Xt ≤ Yt, by Theorem 3.7∫ b

a

(Yt ∧Xt)dCt ≤
∫ b

a

YtdCt,

∫ b

a

(Yt ∧Xt)dCt ≤
∫ b

a

XtdCt.

Then ∫ b

a

(Yt ∧Xt)dCt ≤
∫ b

a

YtdCt ∧
∫ b

a

XtdCt.

�

Theorem 3.11. If uncertain process Xt and Liu process Ct are strong comonotonic

in [a, b], and Xt ≥ 0, then
∫ c
a
XtdCt ≥

∫ b
a
XtdCt, where a < b < c.

Proof. It follows from Theorem 2.11 that∫ c

a

XtdCt =

∫ b

a

XtdCt +

∫ c

b

XtdCt.

Since uncertain process Xt and Liu process Ct are strong comonotonic, Xt ≥ 0, we
have ∫ c

b

XtdCt ≥ 0.

Then ∫ c

a

XtdCt −
∫ b

a

XtdCt =

∫ c

b

XtdCt ≥ 0.

The theorem is proved. �

Definition 3.12. If Xt is an uncertain process, then |Xt| is a measurable function
from T × (Γ,L,M) to the set of nonnegative real numbers, where T denotes the
index set of time.

Theorem 3.13. If uncertain process Xt and Liu process Ct are strong comonotonic

in [a, b], Liu integral
∫ b
a
XtdCt and

∫ b
a
|Xt|dCt exist, then

|
∫ b

a

XtdCt| ≤
∫ b

a

|Xt|dCt.

Proof. Since Liu integral
∫ b
a
XtdCt exists, whether closed interval [a, b] is even par-

titioned or not, the results are the same. Let a = t1 < t2 < · · · < tk+1 = b,
and

|Ct2 − Ct1 | = |Ct3 − Ct2 | = · · · = |Ctn+1
− Ctn |.
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Denote ∆ = max
1≤i≤n

|ti+1 − ti|,∆Ct = Cti+1 − Cti . By the definition of Liu integral,∫ b

a

XtdCt = lim
∆→0

n∑
i=1

Xti · (Cti+1
− Cti)

= lim
∆→0,∆Ct≥0

m∑
i=1

Xti∆Ct + lim
∆→0,∆Ct≤0

k∑
j=1

Xtj∆Ct,

where m + k = n. Since Xt and Ct are strong comonotonic, we obviously have
Xb > Xa, then for each Xtj , there exists Xti corresponding to Xtj . Thus

lim
∆→0,∆Ct≥0

m∑
i=1

Xti∆Ct + lim
∆→0,∆Ct≤0

k∑
j=1

Xtj∆Ct = lim
∆→0,∆Ct≥0

l∑
ij=1

Xij∆Ct,

where ∆Ct > 0, l = m− k. Then

|
∫ b

a

XtdCt| = | lim
∆→0,∆Ct≥0

l∑
ij=1

Xij∆Ct|,

∫ b

a

|Xt|dCt = lim
∆→0,∆Ct≥0

l∑
ij=1

|Xij |∆Ct,

where ∆Ct > 0, l = m− k. Since

| lim
∆→0,∆Ct≥0

l∑
ij=1

Xij∆Ct| ≤ lim
∆→0,∆Ct≥0

l∑
ij=1

|Xij |∆Ct,

we have

|
∫ b

a

XtdCt| ≤
∫ b

a

|Xt|dCt.
�

Theorem 3.14. Let Liu integral
∫ b
a
XtdCt exist. If Xt ≥ 0, and

∫ b
a
XtdCt > 0,

then there exists an interval [α, β] ⊂ [a, b], such that Xt > 0, for any t ∈ [α, β].

Proof. If Xt = 0 for each t ∈ [a, b], then by the definition of Liu integral,
∫ b
a
XtdCt =

0. There is a contradiction between
∫ b
a
XtdCt = 0 and

∫ b
a
XtdCt > 0. Thus there

exists an interval [α, β] ⊂ [a, b], such that Xt > 0, for any t ∈ [α, β]. �

Theorem 3.15. Let Liu integrable uncertain process Xt and Liu process Ct be
strong comonotonic in [a, b]. Assume Xt ≥ 0, and Xt > 0, for each t ∈ [α, β] ⊂
[a, b]. If

∫ t2
t1
XtdCt = 0, for fixed t1 ∈ [α, β], t2 ∈ [a, b], then t1 = t2.

Proof. Let t1 6= t2. Without loss of generality, assume that t1 < t2. Since Xt ≥ 0,
it follows from Theorem 3.6 that ∫ b

a

XtdCt ≥ 0.
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i) If t2 ∈ [α, β], then for each t ∈ [t1, t2] ⊂ [α, β] ⊂ [a, b], we have Xt > 0. By the

definition of Liu integral, we get
∫ t2
t1
XtdCt > 0. There is a contradiction between∫ t2

t1
XtdCt > 0 and

∫ t2
t1
XtdCt = 0. Therefore, t1 = t2.

ii) If t2 /∈ [α, β], then t1 < β < t2. By Theorem 2.11∫ t2

t1

XtdCt =

∫ β

t1

XtdCt +

∫ t2

β

XtdCt.

For each t ∈ [β, t2] ⊂ [a, b], we have
∫ t2
β
XtdCt ≥ 0, and for each t ∈ [t1, β] ⊂ [α, β] ⊂

[a, b], we have Xt > 0. By the definition of Liu integral,
∫ β
t1
XtdCt > 0. Thus∫ t2

t1
XtdCt > 0 , there is a contradiction between

∫ t2
t1
XtdCt > 0 and

∫ t2
t1
XtdCt = 0.

Therefore, t1 = t2.
In case of t2 < t1, we can obtain the results in a similar proof. �

4. Conclusions

In this paper, the definition of strong comonotonic uncertain process was pre-
sented. Based on strong comonotonic uncertain process, some theorems about
mathematical operations such as addition, and scalar multiplication were deduced.
Furthermore, some useful properties of Liu integral were presented. These results
broaden the research field of uncertain calculus and promote the further develop-
ments of uncertainty theory.

References

[1] X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations,
Fuzzy Optimization and Decision Making, 9(1) (2010), 69–81.

[2] D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of
Uncertainty, Plenum, New York, 1988.

[3] X. Gao, Some properties of continuous uncertain measure, International Journal of Uncer-

tainty, Fuzziness and Knowledge-Based System, 17(3) (2009), 419–426.
[4] M. Ha and X. Li, Choquet integral based on self-dual measure, Journal of Hebei University

(Natrual Science Edition), 28(2) (2008), 113–115.

[5] B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE
Transactions on Fuzzy Systems, 10(4) (2002), 445–450.

[6] B. Liu, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin, 2007.

[7] B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems,
2(1) (2008),3–16.

[8] B. Liu, Theory and Practice of Uncertain Programming, 2nd edn, Springer-Verlag, Berlin,

2009.
[9] B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3(1)

(2009), 3–10.
[10] B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncer-

tainty, Springer-Verlag, Berlin, 2010.
[11] B. Liu, Uncertain risk analysis and uncertain reliablity analysis, Journal of Uncertain Sys-

tems, 4(3) (2010), 163–170.
[12] B. Liu and X. Chen, Uncertain multiobjective programming and uncertain goal programming,

Journal of Uncertainty Analysis and Applications, 3(Artical 10) (2015), 10 pages.



142 C. You and N. Xiang

[13] B. Liu and K. Yao, Uncertain multilevel programming: Algorithm and applications, Com-
puters and Industrial Engineering, 89 (2015), 235–240.

[14] B. Liu, Uncertain distribution and independence of uncertain processes, Fuzzy Optimization

and Decision Making, 13(3) (2014), 259–271.
[15] B. Liu, Uncertainty Theory, 5th ed., http : //orsc.edu.cn/liu/ut.pdf.

[16] E. J. Mcshane, Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974.

[17] J. Peng, Risk metrics of loss function for uncertain system, Fuzzy Optimization and Decision
Making, 12(1) (2013), 53–64.

[18] M. Radko, Fuzzy measure and integral, Fuzzy Sets and Systems, 156(3) (2005), 365–370.
[19] A. V. Skorokhod, On a generalization of a stochastic integral, Theory of Probability & Its

Applications, 20(2) (1976), 219–233.

[20] M. Sugeno, Theorem of Fuzzy Integrals and Its Applications, Ph. D. Dissertation, Institute
of Technology, Tokyo, 1974.

[21] R. R. Yager, A foundation for a theory of possibility, Journal of Cybernetics, 10 (1980),

177–204.
[22] K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal

of Intelligent and Fuzzy Systems, 25(3) (2013), 825–832.

[23] C. You, On the convergence of uncertain sequences, Mathematical and Computer Modelling,
49(3) (2009), 482–487.

[24] C. You and L. Yan, Relationships among convergence concepts of uncertain sequences, Com-

puter Modeling and New Technologies, 20(3) (2016), 12–16.
[25] C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in

Engineering, 2015(Artical ID 290539) (2015), 7 pages.

[26] C. You, H. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear
Science and Applications, 9(3) (2016), 1396–1401.

[27] C. You and L. Yan, The p-distance of uncertain variables, Journal of Intelligent and Fuzzy
Systems, 32(1) (2017), 999–1006.

[28] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.

[29] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1
(1978), 3–28.

Cuilian You∗, College of Mathematics and Information Science, Hebei University,

Baoding 071002, China

E-mail address: yycclian@163.com

Na Xiang, College of Mathematics and Information Science, Hebei University, Baod-

ing 071002, China
E-mail address: xiangnahbu@126.com

∗Corresponding author


