تعداد نشریات | 27 |
تعداد شمارهها | 556 |
تعداد مقالات | 5,736 |
تعداد مشاهده مقاله | 8,018,409 |
تعداد دریافت فایل اصل مقاله | 5,389,965 |
A FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 9، شماره 5، اسفند 2012، صفحه 21-40 اصل مقاله (417.15 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2012.102 | ||
نویسندگان | ||
Tian Zhou Xu1؛ Matina John Rassias2؛ Wan Xin Xu3 | ||
1School of Mathematics, Beijing Institute of Technology, Beijing 100081, People's Republic of China | ||
2Department of Statistical, University College London, Science 1-19 Torrington Place, London WC1E 7HB, United Kingdom | ||
3Department of Electrical and Computer Engineering, College of En- gineering, University of Kentucky, Lexington 40506, Usa and School of Communica- tion and Information Engineering, University of Electronic Science and Technology of China | ||
چکیده | ||
The fixed point alternative methods are implemented to give Hyers-Ulam stability for the quintic functional equation $ f(x+3y) - 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and the sextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+ 15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting of intuitionistic fuzzy normed spaces (IFN-spaces). This method introduces a metrical context and shows that the stability is related to some fixed point of a suitable operator. Furthermore, the interdisciplinary relation among the fuzzy set theory, the theory of intuitionistic spaces and the theory of functional equations are also presented in the paper. | ||
مراجع | ||
bibitem{Altun} I. Altun, {it Some fixed point theorems for single and multivalued mappings on ordered non-archimedean fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 7} (2010), 91-96. bibitem{Aoki} T. Aoki, {it On the stability of the linear transformation in Banach spaces}, J. Math. Soc. Japan, {bf 2} (1950), 64-66. bibitem{Atanassov1} K. T. Atanassov, {it Intuitionistic fuzzy sets}, Fuzzy Sets and Systems, {bf 20} (1986), 87-96. bibitem{Atanassov2} K. T. Atanassov, {it New operations defined over the intuitionistic fuzzy sets}, Fuzzy Sets and Systems, {bf 61} (1994), 137-42. bibitem{Baktash} E. Baktash, Y. J. Cho, M. Jalili, R. Saadati and S. M. Vaezpour, {it On the stability of cubic mappings and quadratic mappings in random normed spaces}, Journal of Inequalities and Applications, Article ID 902187, 11 pages, {bf 2008} (2008). bibitem{cadariu} L. Cu{a}dariu and V. Radu, {it Fixed points and stability for functional equations in probabilistic metric and random normed spaces}, Fixed Point Theory and Applications, Article ID 589143, 18 pages, {bf 2009} (2009). bibitem{coker} D. c{C}oker, {it An introduction to intuitionistic fuzzy topological spaces}, Fuzzy Sets and Systems, {bf 88} (1997), 81-89. bibitem{Deschrijver} G. Deschrijver, C. Cornelis and E. E. Kerre, {it On the representation of intuitionistic fuzzy $t$-norms and $t$-conorms}, IEEE Transaction on Fuzzy Systems, {bf 12} (2004), 45-61. bibitem{Garia} J. G. Garc'{i}a and S. E. Rodabaugh, {it Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued ``intuitionistic'' sets, ``intuitionistic'' fuzzy sets and topologies}, Fuzzy Sets and Systems, {bf 156} (2005), 445-484. bibitem{Gavruta} P. Gu{a}vruc{t}a, {it A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings}, Journal of Mathematical Analysis and Applications, {bf 184} (1994), 431-436. bibitem{Hosseini} S. B. Hosseini, D. O'Regan and R. Saadati, {it Some results on intuitionistic fuzzy spaces}, Iranian Journal of Fuzzy Systems, {bf 4} (2007), 53-64. bibitem{Hyers} D. H. Hyers, {it On the stability of the linear functional equation}, Proc. Nat. Acad. Sci. USA, {bf 27} (1941), 222-224. bibitem{Isac} G. Isac and T. M. Rassias, {it Stability of $psi$-additive mappings: applications to nonlinear analysis}, International Journal of Mathematics and Mathematical Sciences, {bf 19} (1996), 219-228. bibitem{Junkim1} K. W. Jun and H. M. Kim, {it The generalized Hyers-Ulam-Rassias stability of a cubic functional equation}, Journal of Mathematical Analysis and Applications, {bf 274} (2002), 867-878. bibitem{Junkimchang} K. W. Jun, H. M. Kim and I. S. Chang, {it On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation}, Journal of Computational Analysis and Applications, {bf 7} (2005), 21-33. bibitem{Merghadi} F. Merghadi and A. Aliouche, {it A related fixed point theorem in $n$ fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 7} (2010), 73-86. bibitem{Mihet} D. Mihec{t}, {it The fixed point method for fuzzy stability of the Jensen functional equation}, Fuzzy Sets and Systems, {bf 160} (2009), 1663-1667. bibitem{Mihetsaadati} D. Mihec{t}, R. Saadati and S. M. Vaezpour, {it The stability of the quartic functional equation in random normed spaces}, Acta Appl. Math., {bf 110} (2010), 797-803. bibitem{Mirmostafaee} A. K. Mirmostafaee and M. S. Moslehian, {it Fuzzy versions of Hyers-Ulam-Rassias theorem}, Fuzzy Sets and Systems, {bf 159} (2008), 720-729. bibitem{Mohiuddine} S. A. Mohiuddine and H. c{S}evli, {it Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space}, Journal of Computational and Applied Mathematics, {bf 235} (2011), 2137-2146. bibitem{Moslehian} M. S. Moslehian and G. Sadeghi, {it Stability of two types of cubic functional equations in non-archimedean spaces}, Real Anal. Exchange, {bf 33} (2008), 375-383. bibitem{Moszner} Z. Moszner, {it On the stability of functional equations}, Aequationes Math., {bf 77} (2009), 33-88. bibitem{Mursaleen} M. Mursaleen and S. A. Mohiuddine, {it On stability of a cubic functional equation in intuitionistic fuzzy normed spaces}, Chaos, Solitons and Fractals, {bf 42} (2009), 2997-3005. bibitem{Nozari} K. Nozari and B. Fazlpour, {it Some consequences of space-time fuzziness}, Chaos, Solitons and Fractals, {bf 34} (2007), 224-234. bibitem{Paneah} B. Paneah, {it A new approach to the stability of linear functional operators}, Aequationes Math., {bf 78} (2009), 45-61. bibitem{Park} J. H. Park, {it Intuitionistic fuzzy metric spaces}, Chaos, Solitons and Fractals, {bf 22} (2004), 1039-1046. bibitem{Radu} V. Radu, {it The fixed point alternative and the stability of functional equations}, Fixed Point Theory, {bf 4} (2003), 91-96. bibitem{Rafi} M. Rafi and M. S. M. Noorani, {it Fixed point theorem on intuitionistic fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 3} (2006), 23-29. bibitem{JMRassias} J. M. Rassias, {it Solution of the Ulam stability problem for quartic mappings}, Glasnik Matemativ{c}ki, {bf 34} (1999), 243-252. bibitem{ThRassias} T. M. Rassias, {it On the stability of the linear mapping in Banach spaces}, Proc. Amer. Math. Soc., {bf 72} (1978), 297-300. bibitem{Saadati} R. Saadati, {it A note on ``Some results on the IF-normed spaces''}, Chaos, Solitons and Fractals, {bf 41} (2009), 206-213. bibitem{Saadaticho} R. Saadati, Y. J. Cho and J. Vahidi, {it The stability of the quartic functional equation in various spaces}, Computers and Mathematics with Applications, {bf 60} (2010), 1994-2002. bibitem{Saadatipark} R. Saadati and C. Park, {it Non-archimedean $mathscr{L}$-fuzzy normed spaces and stability of functional equations}, Computers and Mathematics with Applications, {bf 60} (2010), 2488-2496. bibitem{Saadatirazani} R. Saadati, A. Razani and H. Adibi, {it A common fixed point theorem in $mathscr{L}$-fuzzy metric spaces}, Chaos Solitons Fractals, {bf 33} (2007), 358-363. bibitem{Saadatisedghi} R. Saadati, S. Sedghi and N. Shobe, {it Modified intuitionistic fuzzy metric spaces and some fixed point theorems}, Chaos, Solitons and Fractals, {bf 38} (2008), 36-47. bibitem{Saadatisedghi} R. Saadati, S. Sedghi and H. Zhou, {it A common fixed point theorem for $psi$-weakly commuting maps in $mathcal {L}$-fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 5} (2008), 47-53. bibitem{Saadativaezpour} R. Saadati, S. M. Vaezpour and Y. J. Cho, {it Quicksort algorithm: application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words}, Journal of Computational and Applied Mathematics, {bf 228} (2009), 219-225. bibitem{Sedghi} S. Sedghi, K. P. R. Rao and N. Shobe, {it A common fixed point theorem for six weakly compatible mappings in $M$-fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 5} (2008), 49-62. bibitem{Ulam} S. M. Ulam, {it A collection of the mathematical problems}, Interscience, New York, 1960. bibitem{xu1} T. Z. Xu, J. M. Rassias, M. J. Rassias and W. X. Xu, {it A fixed point approach to the stability of quintic and sextic functional equations in quasi-$beta$-normed spaces}, Journal of Inequalities and Applications, Article ID 423231, 23 pages, {bf 2010} (2010). bibitem{xu2} T. Z. Xu, J. M. Rassias and W. X. Xu, {it Intuitionistic fuzzy stability of a general mixed additive-cubic equation}, Journal of Mathematical Physics, 063519, 21 pages, {bf 51} (2010). bibitem{xu3} T. Z. Xu, J. M. Rassias and W. X. Xu, {it Stability of a general mixed additive-cubic functional equation in non-archimedean fuzzy normed spaces}, Journal of Mathematical Physics, 093508, 19 pages, {bf 51} (2010). bibitem{xu4} T. Z. Xu, J. M. Rassias and W. X. Xu, {it On the stability of a general mixed additive-cubic functional equation in random normed spaces}, Journal of Inequalities and Applications, Article ID 328473, 16 pages, {bf 2010} (2010). bibitem{xu5} T. Z. Xu, J. M. Rassias and W. X. Xu, {it A fixed point approach to the stability of a general mixed AQCQ-functional equation in non-archimedean normed spaces}, Discrete Dynamics in Nature and Society, Article ID 812545, 24 pages, {bf 2010} (2010). bibitem{xu6} T. Z. Xu, J. M. Rassias and W. X. Xu, {it A generalized mixed additive-cubic functional equation}, Journal of Computational Analysis and Applications, {bf 13} (2011), 1273-1282. bibitem{Zhang} S. S. Zhang, J. M. Rassias and R. Saadati, {it Stability of a cubic functional equation in intuitionistic random normed spaces}, Appl. Math. Mech. -Engl. Ed., {bf 31} (2010), 21-26. | ||
آمار تعداد مشاهده مقاله: 2,553 تعداد دریافت فایل اصل مقاله: 1,643 |