تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,825 |
تعداد مشاهده مقاله | 8,163,058 |
تعداد دریافت فایل اصل مقاله | 5,461,566 |
REVISION OF SIGN DISTANCE METHOD FOR RANKING OF FUZZY NUMBERS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 8، دوره 10، شماره 4، آبان 2013، صفحه 101-117 اصل مقاله (285.88 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2013.1050 | ||
نویسندگان | ||
Saeid Abbasbandy ![]() ![]() ![]() | ||
1Department of Mathematics, Science and Research Branch, Is- lamic Azad University, Tehran, Iran | ||
2Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
3Department of Mathematics, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran | ||
چکیده | ||
Recently, Abbasbandy and Asady have been proposed a modification of the distance based approach, namely ``sign distance method''. However, in this paper, it is shown that this method has some drawbacks, i.e., the result is not consistent with human intuition for special cases and this method cannot always logically infer ranking order of the images of the fuzzy numbers. In this paper, we present a revised method which can avoid these problems for ranking fuzzy numbers. Also, we present several properties for revised sign distance method while the original method does not have some of them. | ||
کلیدواژهها | ||
Fuzzy number؛ Ranking of fuzzy numbers؛ Sign distance method؛ Revised sign distance method | ||
مراجع | ||
bibitem{ABB1} S. Abbasbandy and B. Asady, {it Ranking of fuzzy numbers by sign distance}, Information Sciences, textbf{176} (2006), 2405--2416. bibitem{ABB2} S. Abbasbandy and T. Hajjari, {it A new approach for ranking of trapezoidal fuzzy numbers}, Computers and Mathematics with Applications, textbf{57} (2009), 413--419. bibitem{ADA1} M. Adamo, {it Fuzzy decision trees}, Fuzzy Sets and Systems, textbf{4} (1980), 207--219. bibitem{ASA1} B. Asady, {it The revised method of ranking LR fuzzy number based on deviation degree}, Expert Systems with Applications, textbf{37} (2010), 5056--5060. bibitem{ASA3} B. Asady, {it Revision of distance minimization method for ranking of fuzzy numbers}, Applied Mathematical Modelling, textbf{35} (2011), 1306--1313. bibitem{ASA2} B. Asady and M. Zendehnam, {it Ranking of fuzzy numbers by distance minimization}, Applied Mathematical Modelling, textbf{31} (2007), 2589--2598. bibitem{BAS1} S. Bass and H. Kwakernaak, {it Rating and ranking of multiple-aspect alternatives using fuzzy sets}, Automatica, textbf{13} (1977), 47--58. bibitem{BOR1} G. Bortolan and R. Degani, {it A review of some methods for ranking fuzzy numbers}, Fuzzy Sets and Systems, textbf{15} (1985), 1--19. bibitem{CHE2} S. J. Chen and C. L. Hwang, {it Fuzzy multiple attribute decision making}, Springer, New York, 1992. bibitem{CHE1} C. H. Cheng, {it A new approach for ranking fuzzy numbers by distance method}, Fuzzy Sets and Systems, textbf{95} (1998), 307--317. bibitem{CHO1}F. Choobineh and H. Li, {it An index for ordering fuzzy numbers}, Fuzzy Sets and Systems, textbf{54} (1993), 287--294. bibitem{CHU1} T. Chu and C. Tsao, {it Ranking fuzzy numbers with an area between the centroid point and original point}, Computers and Mathematics with Applications, textbf{43} (2002), 111--117. bibitem{DIA1} P. Diamond and P. Kloeden, {it Metric spaces of fuzzy sets}, Fuzzy Sets and Systems, textbf{35} (1990), 241--249. bibitem{DUB2} D. Dubios and H. Prade, {it Operations on fuzzy numbers}, Int. J. System Sci., textbf{9} (1978), 626--631. bibitem{DUB1} D. Dubois and H. Prade, {it Fuzzy sets and systems: theory and application}, Academic Press, New York, 1980. bibitem{FOR1} P. Fortemps and M. Roubens, {it Ranking and defuzzification methods based on area compensation}, Fuzzy Sets and Systems, textbf{82} (1996), 319--330. bibitem{GRZ3} P. Grzegorzewski, {it Metrics and orders in space of fuzzy numbers}, Fuzzy Sets and Systems, textbf{97}(1998), 83--94. bibitem{GRZ1} P. Grzegorzewski, {it Nearst interval approximation of a fuzzy number}, Fuzzy Sets and Systems, textbf{130} (2002), 321--330. bibitem{JAI1} R. Jain, {it Decision-making in the presence of fuzzy variable}, IEEE Trans. Syst. Man Cybernet., textbf{6} (1976), 698--703. bibitem{JAI2} R. Jain, {it A procedure for multi-aspect decision making using fuzzy sets}, Int. J. Syst. Sci., textbf{8} (1978), 1--7. bibitem{KAU1} A. Kauffman and M. M. Gupta, {it Introduction to fuzzy arithmetic: theory and application}, Van Nostrand Reinhold, New York, 1991. bibitem{KUM1} A. Kumar, A. Gupta and M. K. Sharma, {it Application of tabu search for solving the bi-objective warehouse problem in a fuzzy environment}, Iranian Journal of Fuzzy Systems, textbf{9(1)} (2012), 1--19. bibitem{LEE2} K. M. Lee, C. H. Cho and H. Lee-Kwang, {it Ranking fuzzy values with satisfaction function}, Fuzzy Sets and Systems, textbf{64} (1994), 295--311. bibitem{LEE1} E. Lee and R. J. Li, {it Comparison of fuzzy numbers based on the probability measure of fuzzy events}, Computers and Mathematics with Applications, textbf{15(10}) (1988), 887--896. bibitem{LI1} J. Li, W. Li and X. Kong, {it A New Algorithm Model for Solving Fuzzy Linear Systems}, Southeast Asian Bulletin of Mathematics, textbf{34} (2010), 121--132. bibitem{MA1} M. Ma, M. Friedman and A. Kandel, {it A new fuzzy arithmetic}, Fuzzy Sets and Systems, textbf{108} (1999), 83--90. bibitem{MAH1} I. Mahdavi, N. Mahdavi-Amiri and S. Nejati, {it Algorithms for biobjective shortest path problems in fuzzy networks}, Iranian Journal of Fuzzy Systems , textbf{8(4)} (2011), 9--37. bibitem{MOH1} A. Mohamadi Nejad and M. Mashinchi, {it Ranking fuzzy numbers based on the areas on the left and right sides of fuzzy number}, Computers and Mathematics with Applications, textbf{61(2)} (2011), 731--442. bibitem{SEV1} P. Sevastianov, {it Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory}, Information Sciences, textbf{177} (2007), 4645--4661. bibitem{WAN1} X. Wang and E. E. Kerre, {it Reasonable properties for the ranking of fuzzy quantities I}, Fuzzy Sets and Systems, textbf{118} (2001), 375--385. bibitem{WAN2} X. Wang and E. E. Kerre, {it Reasonable properties for the ranking of fuzzy quantities II}, Fuzzy Sets and Systems, textbf{118} (2001), 387--405. bibitem{WAN5} Y. J. Wang and S. H. Lee, {it The revised method of ranking fuzzy numbers with an area between the centroid and original points}, Computers and Mathematics with Applications, textbf{55} (2008), 2033--2042. bibitem{ZXW1} Z. X. Wang, Y. J. Liu, Z. P. Fan and B. Feng, {it Ranking L-R fuzzy number based on deviation degree}, Information Sciences, textbf{179} (2009), 2070--2077. bibitem{WAN3} Y. M. Wang and Y. Luo, {it Area ranking of fuzzy numbers based on positive and negative ideal points}, Computers and Mathematics with Applications, textbf{58} (2009), 1769--1779. bibitem{WAN4} Y. M. Wang, J. B. Yang, D. L. Xu and K. S. Chin, {it On the centroids of fuzzy numbers}, Fuzzy Sets and Systems, textbf{157} (2006), 919--926. bibitem{YAG2} R. R. Yager, {it On choosing between fuzzy subsets}, Kybernetes, textbf{9} (1980), 151--154. bibitem{YAG1} R. R. Yager, {it A procedure for ordering fuzzy subsets of the unit interval}, Information Sciences, textbf{24} (1981), 143--161. bibitem{ZAD1} L. A. Zadeh, {it Fuzzy sets}, Information and Control, textbf{8} (1965), 338--353. | ||
آمار تعداد مشاهده مقاله: 2,643 تعداد دریافت فایل اصل مقاله: 2,441 |