تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,822 |
تعداد مشاهده مقاله | 8,158,631 |
تعداد دریافت فایل اصل مقاله | 5,458,172 |
CLASSIFYING FUZZY SUBGROUPS OF FINITE NONABELIAN GROUPS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 9، شماره 4، دی 2012، صفحه 31-41 اصل مقاله (390.77 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2012.131 | ||
نویسنده | ||
Marius Tarnauceanu ![]() | ||
Faculty of Mathematics, Al.I. Cuza" University, Iasi, Romania | ||
چکیده | ||
In this paper a rst step in classifying the fuzzy subgroups of a nite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups. | ||
کلیدواژهها | ||
Fuzzy subgroups؛ Chains of subgroups؛ Maximal chains of subgroups؛ Dihedral groups؛ Recurrence relations | ||
مراجع | ||
[1] Y. Alkhamees, Fuzzy cyclic subgroups and fuzzy cyclic p-subgroups, J. Fuzzy Math., 3 (1995), 911-919. [2] G. Gratzer, General lattice theory, Academic Press, New York, 1978. [3] T. Head, A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Sets and Systems, 73 (1995), 349-358. [4] T. Head, A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Sets and Systems, 79 (1996), 277-278. [5] A. Jain, Fuzzy subgroups and certain equivalence relations, Iranian Journal of Fuzzy Systems, 3 (2006), 75-91. [6] R. Kumar, Fuzzy algebra, I, Univ. of Delhi, Publ. Division, 1993. [7] M. Mashinchi and M. Mukaidono, A classication of fuzzy subgroups, Ninth Fuzzy System Symposium, Sapporo, Japan, (1992), 649-652. [8] M. Mashinchi and M. Mukaidono, On fuzzy subgroups classication, Research Report of Meiji Univ., 9 (1993), 31-36. [9] J. N. Mordeson, Invariants of fuzzy subgroups, Fuzzy Sets and Systems, 63 (1994), 81-85. [10] J. N. Mordeson, N. Kuroki and D. S. Malik, Fuzzy semigroups, Springer Verlag, Berlin, 2003. [11] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups, I, Fuzzy Sets and Systems, 123 (2001), 259-264. [12] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups, II, Fuzzy Sets and Systems, 136 (2003), 93-104. [13] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups, III, Int. J. Math. Sci., 36 (2003), 2303-2313. [14] V. Murali and B. B. Makamba, Counting the number of fuzzy subgroups of an abelian group of order pnqm, Fuzzy Sets and Systems, 144 (2004), 459-470. [15] V. Murali and B. B. Makamba, Fuzzy subgroups of nite abelian groups, FJMS, 14 (2004), 113-125. [16] S. Ngcibi, V. Murali and B. B. Makamba, Fuzzy subgroups of rank two abelian p-group, Iranian Journal of Fuzzy Systems, 7 (2010), 149-153. [17] R. Schmidt, Subgroup lattices of groups, de Gruyter Expositions in Mathematics, de Gruyter, Berlin, 14 (1994). [18] R. P. Stanley, Enumerative combinatorics, II, Cambridge University Press, Cambridge, 1999. [19] M. Suzuki, Group theory, I, II, Springer Verlag, Berlin, (1982, 1986). [20] M. Stefanescu and M. Tarnauceanu, Counting maximal chains of subgroups of nite nilpotent groups, Carpathian J. Math., 25 (2009), 119-127. [21] M. Tarnauceanu, Groups determined by posets of subgroups, Ed. Matrix Rom, Bucuresti, 2006. [22] M. Tarnauceanu, The number of fuzzy subgroups of nite cyclic groups and Delannoy num- bers, European J. Combin., doi: 10.1016/j.ejc.2007.12.005, 30 (2009), 283-287. [23] M. Tarnauceanu, Distributivity in lattices of fuzzy subgroups, Information Sciences, doi: 10.1016/j.ins.2008.12.003, 179 (2009), 1163-1168. [24] M. Tarnauceanu and L. Bentea, On the number of fuzzy subgroups of nite abelian groups, Fuzzy Sets and Systems, doi: 10.1016/j.fss.2007.11.014, 159 (2008), 1084-1096. [25] M. Tarnauceanu and L. Bentea, A note on the number of fuzzy subgroups of nite groups, Sci. An. Univ. "Al.I. Cuza" Iasi, Math., 54 (2008), 209-220. [26] I. Tomescu, Introduction to combinatorics, Collet's Publishers Ltd., London, 1975. [27] A. C. Volf, Counting fuzzy subgroups and chains of subgroups, Fuzzy Systems & Articial Intelligence, 10 (2004), 191-200. [28] A. Weinberger, Reducing fuzzy algebra to classical algebra, New Math. Natur. Comput., 1 (2005), 27-64. [29] Y. Zhang and K. Zou, A note on an equivalence relation on fuzzy subgroups, Fuzzy Sets and Systems, 95 (1998), 243-247. | ||
آمار تعداد مشاهده مقاله: 2,625 تعداد دریافت فایل اصل مقاله: 1,856 |