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ON EXISTENCE AND UNIQUENESS OF SOLUTION OF FUZZY

FRACTIONAL DIFFERENTIAL EQUATIONS

S. ARSHAD

Abstract. The purpose of this paper is to study the fuzzy fractional differen-

tial equations. We prove that fuzzy fractional differential equation is equivalent

to the fuzzy integral equation and then using this equivalence existence and
uniqueness result is establish. Fuzzy derivative is consider in the Goetschel-

Voxman sense and fractional derivative is consider in the Riemann Liouville
sense. At the end, we give the applications of the main result.

1. Introduction

The study of theory of the fuzzy differential equations has been growing rapidly.
In many cases of the modeling of real world phenomena, fuzzy initial value problems
appear naturally, because information about the behavior of a dynamical system
is uncertain. In order to obtain a more adequate model, we have to take into
account these uncertainties. Significant results from the theory of fuzzy differential
equations and their applications can be found in [11], [13], [15], [18], [21] and [24].

Fractional calculus stems from the beginning of theory of differential and in-
tegral calculus [17],[19]. Fractional differential equations are a powerful tool for
modeling many systems in various areas of sciences. There are many systems in
nature with a complex behavior and fractional order model capture the properties
of these kinds of systems but classical integer order model neglect such properties.
Fractional differential equations have played an important role in many fields such
as astrophysics, electronics, diffusion, material theory, chemistry, control theory,
wave propagation, signal theory, electricity and thermodynamics (see [14],[22]).

The concept of solution of fuzzy fractional differential equations was first intro-
duced in [2]. Generally, in fuzzy case, the fuzzy fractional differential equation

Dqy(t) = f(t, y(t)), lim
t→0+

t1−qy(t) = y0, (1)

is not equivalent to fuzzy integral equation

y(t) = y0t
q−1 + Iqf(t, y(t)). (2)

In [4], we established the existence and uniqueness of the solution of fuzzy frac-
tional integral equation (2). Obviously, each solution of integral equation (2) is also
a solution of (1). Also in [5], we have given the existence and uniqueness of frac-
tional differential equation with fuzzy initial condition. Fuzzy fractional integral
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equations have been studied in [1]. Explicit solutions of fuzzy fractional differential
equations have given in [3]. In [20] fuzzy laplace transform method have proposed
to solve fuzzy fractional differential equations and modified Euler Method have
presented in [16] to solve fuzzy fractional differential equations.

In this paper, we use the concept of Goetschel-Voxman derivative was defined
in paper [10]. In the definition of this derivative non-standard fuzzy subtraction is
used. The relation between Goetschel-Voxman derivative and other fuzzy deriva-
tives can be found in the paper [7]. The advantage of this derivative is that we can
use integration by parts formula and this formula does not work in case of other
kind of fuzzy derivatives. We prove that fuzzy fractional differential equation (1) is
equivalent to fuzzy integral equation (2). Using this equivalence the existence and
uniqueness of solution of (1) is establish. For basic results related to differentiation
and integration of fuzzy numbers we refer [8] and [10].

In case of Hukuhara derivative (H-derivative), the diameter of the solutions is
nondecreasing as the time goes ahead. This property is major obstacle in ap-
plication of H-differentiability in fuzzy mathematical modeling. In [23] authors
gave comparative analysis of some alternative approaches, but this shortcoming
was solved by Bede and Gal in [6] where they introduce the strongly generalized
differentiability.

This paper is organized as follows: In section 2, we recall some basic and well
known results related to fuzzy numbers and fractional differential equations. In
section 3, we proved the existence and uniqueness of the solution of fuzzy fractional
differential equations. At the end in section 4, we conclude the paper by providing
the applications of the existence and uniqueness theorem.

2. Preliminaries

Let E denote the set of all fuzzy numbers. We recall that y : R → [0, 1] is a
fuzzy number if it satisfies the following properties:
(i) There is a unique ξ0 ∈ R such that y(ξ0) = 1,
(ii) [y]0 =cl{ξ ∈ R|y(ξ) > 0} is bounded in R,
(iii) y is strictly fuzzy convex on [y]0, i.e.,

y(λξ1+(1−λ)ξ2) > min{y(ξ1), y(ξ2)} for all ξ1, ξ2 ∈ [y]0, ξ1 6= ξ2 for all λ ∈ (0, 1)

(iv) y is upper semi-continuous on R.
Let y ∈ E. Then for each α ∈ (0, 1], the set

[y]α = {ξ ∈ R; y(ξ) ≥ α},

is called the α-level set of y.

Theorem 2.1. [8] Let y ∈ E and for each α ∈ [0, 1],

y1(α) = min[y]α and y2(α) = max[y]α,

then we have
(i) y1, y2 ∈ C[0, 1] = {u : [0, 1]→ R; u is continuous on [0, 1]},
(ii) y1 is monotone increasing and y2 is monotone decreasing,
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(iii) y1(1) = y2(1).
Conversely, if x(α), z(α) : [0, 1]→ R satisfy the above conditions (i)− (iii), denote

y (ξ) =

{
sup{α ∈ [0, 1] : x(α) ≤ ξ ≤ z(α)}, ξ ∈ [x (0) , z (0)],
0, ξ /∈ [x (0) , z (0)].

Then there exists y ∈ E such that [y]α = [x(α), z(α)], y1(α) = x(α), y2(α) =
z(α), α ∈ [0, 1].

In [1] parametric representation of fuzzy number was introduced, i.e. y ∈ E
can be written as y = (y1(α), y2(α)), α ∈ [0, 1]. (for sake of simplicity we write
y = (y1, y2)). Therefore fuzzy number y ∈ E can be considered as a continuous
curve {(y1(α), y2(α)) : α ∈ [0, 1]} in R2. For t ∈ R, the membership function has
the following form:

µt(ξ) =

{
1, ξ = t,
0 , ξ 6= t.

Then we have t ∈ R ⊂ E, [µt]
α = [t, t] for all α ∈ [0, 1], therefore the parametric

representation of t ∈ R is t = (t, t), α ∈ [0, 1].
For w = (u, v) ∈ C[0, 1]× C[0, 1], define the norm

‖w‖ = max
0≤α≤1

max{|u(α)|, |v(α)|}.

It is obvious that C[0, 1]× C[0, 1] is a Banach space.
For y = (y1, y2), z = (z1, z2) ∈ E, k ∈ R, we have the following operations based

on Zadeh’s extension principle,

i) y ⊕ z = (y1 + z1, y2 + z2),
ii) y 	 z = (y1 − z2, y2 − z1),

iii) k ⊗ y =

{
(ky1, ky2), k ≥ 0,
(ky2, ky1), k < 0.

It is easy to see that E is not a linear space under these operations. In [8] the
following operations were introduced.
For all y, z ∈ E, define y − z = (y1(α)− z1(α), y2(α)− z2(α)), α ∈ [0, 1].

E − E := {w : w = y − z, y, z ∈ E}.
If the H-difference (Hukuhara difference) of y and z exists, then y − z is the H-
difference of y and z.

Remark 2.2. [8] i) E − E is a linear subspace of C[0, 1]× C[0, 1], and

a) y ⊕ z = y + z for all y, z ∈ E.
b) k ⊗ y = k · y for all k ∈ [0,∞) for all y ∈ E.
where ”+”, ”·” are additive and product operations in linear space C[0, 1]×C[0, 1].
ii) E is a closed convex cone in Banach space C[0, 1]× C[0, 1].

In this paper, ”⊕”, ”	”, ”⊗” represent operations based on Zadeh’s extension
Principle, ”+”, ”−”, ” ·” stand for operations based on linear space, if they agree,
we use the later. We define a metric d on E by

d(y, z) = sup
0≤α≤1

dH([y]α, [z]α),



140 S. Arshad

where dH is the Hausdorff metric defined as

dH([y]α, [z]α) = max{|y1(α)− z1(α)|, |y2(α)− z2(α)|}.

It is well known that (E, d) is a complete metric space. We list some properties of
the metric d:

d(y + w, z + w) = d(y, z), d(λy, λz) = |λ|d(y, z), (3)

d(y, z) ≤ d(y, w) + d(w, z) (4)

d(λy, γy) ≤ |λ− γ|d(y, 0̂) (5)

for all y, z, w ∈ E and λ, γ ∈ R.
Let T ⊂ R be an interval, y : T → E be a fuzzy function, and t0 ∈ T . If for each

ε > 0, there exists δ > 0, such that

d(y(t), y(t0)) < ε,

for all t ∈ T with |t− t0| < δ, then y is said to be continuous at t0. If y is continuous
at each point of T, then y is said to be continuous on T. We denote by C(T,E) the
space of all continuous fuzzy functions on T .
Let a > 0 and r ≥ 0. We need the following notion before proceeding further.

Cr([0, a], E) := {y ∈ C((0, a], E) : sup
t∈[0,a]

d(try(t), 0̂) <∞},

and on this set we define the metric dr by

dr(y, z) := sup
t∈[0,a]

trd(y(t), z(t)).

Also, dr(y, 0̂) will be denoted by ‖y‖r. Clearly, C([0, a], E) = C0([0, a], E).

Theorem 2.3. (Cr([0, a], E), dr) is a complete metric space.

Proof. Let {yn}∞n=1 be a Cauchy sequence in Cr([0, a], E). Then for each ε > 0
there exists M ∈ N such that dr(yn, ym) < ε for all n, m ≥M. That is,

sup
t∈[0,a]

trd(yn(t), ym(t)) < ε, for all n, m ≥M,

Let zn(t) := tryn(t), n ≥ 1. Then

sup
t∈[0,a]

d(zn(t), zm(t)) < ε, for all n, m ≥M.

This implies that {zn}∞n=1 is a Cauchy sequence in the complete metric space
C([0, a], E). Therefore zn converges uniformly to z ∈ C([0, a], E).
Let y(t) := t−rz(t), t ∈ (0, a]. Clearly y ∈ C((0, a], E). we have

dr(yn, y) = sup
t∈[0,a]

trd(yn(t), y(t))

= sup
t∈[0,a]

d(tryn(t), try(t))

= sup
t∈[0,a]

d(zn(t), z(t))→ 0, as n→∞.
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Hence yn converges to y. Since {yn} ⊂ Cr([0, a], E), we have

sup
t∈[0,a]

d(tryn(t), 0̂) <∞, for all n ≥ 1. (6)

Now using the inequality (4), we obtain

sup
t∈[0,a]

d(try(t), 0̂) ≤ sup
t∈[0,a]

[trd(y(t), yM (t)) + d(tryM (t), 0̂)]

≤ sup
t∈[0,a]

trd(y(t), yM (t)) + sup
t∈[0,a]

d(tryM (t), 0̂).

Therefore by the convergence of yn and from inequality (6), we get

sup
t∈[0,a]

d(try(t), 0̂) <∞.

Hence y ∈ Cr([0, a], E). Thus Cr([0, a], E) is a complete metric space. �

Let y : [a, b] → E be a fuzzy function, t0 ∈ [a, b] and ω ∈ E. If for each ε > 0,
there exists δ > 0, such that

d

(
y(t)− y(t0)

t− t0
, ω

)
< ε,

for all t ∈ [a, b] with |t − t0| < δ, then y is said to be derivable at t0. We denote
y′(t0) = ω or d

dty(t0) = ω. If y is derivable at each point of [a, b], then y is said
to be derivable on [a, b]. Obviously, if y : [a, b] → E is derivable at t0, then y is
continuous at t0.
We denote by C1

r [0, a] the space of functions y(t) which are continuously derivable
on (0, a] and have the derivative y′(t) of order 1 on (0, a] such that y′(t) ∈ Cr[0, a].

Proposition 2.4. [8] Let y : [a, b]→ E be derivable on [a, b] and y(t) = (y1(t, α),
y2(t, α)), t ∈ [a, b], α ∈ [0, 1]. Then

y′(t) =

(
d

dt
y1(t, α),

d

dt
y2(t, α)

)
, α ∈ [0, 1],

provided this equation defines a fuzzy number y′(t) ∈ E.

Remark 2.5. [8] i) If y : [a, b] → E is derivable on [a, b], then y is H-derivable
(Hukuhara derivable) on [a, b], and the H-derivative is the same as the derivative.
That is to say on an interval derivability is equivalent to H-derivability.

ii) If y : [a, b]→ E is Riemann integrable on [a, b], then the parametric representa-
tion of its integral is given by∫ b

a

y(t)dt =

(∫ b

a

y1(t, α)dt,

∫ b

a

y2(t, α)dt

)
, a, b ∈ T, α ∈ [0, 1].

Also, we know that the fuzzy integral is a fuzzy number.

Lemma 2.6. Let y : [a, b] → E and z : [a, b] → E be integrable on [a, b]. If the
function g : [a, b]→ R defined by

g(t) := d(y(t), z(t))

is Riemann integrable on [a, b]. Then
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d

(∫ b

a

y(t)dt,

∫ b

a

z(t)dt

)
≤
∫ b

a

d(y(t), z(t))dt.

Proof. It can be proved easily using the Riemann sum. �

The following results are given in [8].

Theorem 2.7. Let f : [a, b] → E be continuous on [a, b], then the fuzzy function
F : [a, b]→ E given by

F (t) =

∫ t

a

f(s)ds, t ∈ [a, b],

is derivable on [a, b] and

F ′(t) = f(t), t ∈ [a, b].

Corollary 2.8. Assume that f : [a, b]→ E is continuously derivable on [a, b], then∫ b

a

f ′(t)dt = f(b)− f(a),

where f(b)− f(a) is the H-difference of f(b) and f(a).

Theorem 2.9. Let ϕ : [a, b] → R be continuously derivable and y : [a, b] → E be
continuously derivable. Then∫ b

a

y(t)ϕ′(t)dt = [ϕ(t) · y(t)]ba −
∫ b

a

ϕ(t) · y′(t)dt.

Let y be a real valued function on [0, a]. The Riemann-Liouville fractional integral
Iqy of order q > 0 is defined by

Iqy(t) =
1

Γ(q)

∫ t

0

(t− s)q−1y(s)ds, 0 < t < a,

provided that the expression on the right hand side is defined.
The Riemann-Liouville fractional derivative Dqy of y of order 0 < q < 1 is

defined by
Dqy(t) =

d

dt
I1−qy(t), 0 < t < a,

provided the expression on right hand side is defined.

Lemma 2.10. Let q > 0 and y : [0, a] → E be such that y(t) = (y1(t, α), y2(t, α))
for all t ∈ [0, a] and α ∈ [0, 1]. Then the family of pairs

Fα :=

(
1

Γ(q)

∫ t

0

(t− s)q−1y1(s, α)ds,
1

Γ(q)

∫ t

0

(t− s)q−1y2(s, α)ds

)
, α ∈ [0, 1]

define a fuzzy number u ∈ E such that (u1(α), u2(α)) = Fα.

Proof. Fix t ∈ [0, a], then by Theorem 2.1(i), y1(., α), y2(., α) ∈ C([0, 1],R), for all
α ∈ [0, 1]. It is easy to see that Iqy1(t, α) and Iqy2(t, α) are continuous with respect
to α. From Theorem 2.1(ii), we have y1(α) ≤ y1(β) for α ≤ β, then

1

Γ(q)

∫ t

0

(t− s)q−1y1(s, α)ds ≤ 1

Γ(q)

∫ t

0

(t− s)q−1y1(s, β)ds,
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therefore Iqy1 is monotone increasing with respect to α, similarly, y2 is monotone
decreasing. y ∈ E implies y1(1) = y2(1) which gives

1

Γ(q)

∫ t

0

(t− s)q−1y1(s, 1)ds =
1

Γ(q)

∫ t

0

(t− s)q−1y2(s, 1)ds.

Hence by Theorem 2.1 there exists a fuzzy number u ∈ E such that (u1(α), u2(α)) =
Fα. �

Let y ∈ C([0, a], E), where y = (y1, y2), we define the fractional integral of order
q > 0 of y by

Iqy(t) =

(
1

Γ(q)

∫ t

0

(t− s)q−1y1(s, α)ds,
1

Γ(q)

∫ t

0

(t− s)q−1y2(s, α)ds

)
, α ∈ [0, 1].

Proposition 2.11. Let p, q > 0 and y ∈ C([0, a], E). Then

IpIqy = Ip+qy.

Proof. Similar to the proof of Lemma 4.1 in [4]. �

Let y ∈ C([0, a], E), where y = (y1, y2). We define the Riemann-Liouville frac-
tional derivative of order 0 < q < 1 of y by

Dqy(t) =
d

dt
I1−qy(t).

The Riemann-Liouville derivative Dqy(t) can be represented parametrically as fol-
lows

Dqy(t) =

(
1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qy1(s, α)ds,
1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qy2(s, α)ds

)
,

where α ∈ [0, 1].

Lemma 2.12. Let x : [0, a]→ E be a continuous function and g : R2 → R be such
that g(t, s) is non negative and non decreasing with respect to t and continuous
with respect to s and ∂

∂tg(t, s) is continuous with respect to t. Then the function
G : [0, a]→ E given by

G(t) =

∫ t

0

g(t, s)x(s)ds, t ∈ [0, a],

is derivable and

G′(t) = g(t, t)x(t) +

∫ t

0

∂

∂t
g(t, s)x(s)ds, t ∈ [0, a]. (7)

Proof. For any h > 0 and by Proposition 3.5 in [8], we have

G(t+ h) =

∫ t+h

0

g(t+ h, s)x(s)ds

=

∫ t+h

t

g(t+ h, s)x(s)ds+

∫ t

0

(g(t+ h, s)− g(t, s))x(s)ds

+

∫ t

0

g(t, s)x(s)ds
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Now using Lemma 2.6, equation (3) and inequality (5), we have

d

(
1

h
⊗ (G(t+ h)−G(t)), g(t, t)x(t) +

∫ t

0

∂g(t, s)

∂t
x(s)ds

)
≤ d

(
1

h

∫ t

0

(g(t+ h, s)− g(t, s))x(s)ds,

∫ t

0

∂g(t, s)

∂t
x(s)ds

)
+d

(
1

h

∫ t+h

t

g(t+ h, s)x(s)ds, g(t, t)x(t)

)

≤
∫ t

0

d

(
g(t+ h, s)− g(t, s)

h
x(s),

∂g(t, s)

∂t
x(s)

)
ds

+
1

h

∫ t+h

t

d(g(t+ h, s)x(s), g(t, t)x(t))ds

≤
∫ t

0

∣∣∣∣g(t+ h, s)− g(t, s)

h
− ∂g(t, s)

∂t

∣∣∣∣ d(x(s), 0̂)ds

+
1

h

∫ t+h

t

[d(g(t+ h, s)x(s), g(t, s)x(s)) + d(g(t, s)x(s), g(t, s)x(t))

+d(g(t, s)x(t), g(t, t)x(t))]ds

≤
∫ t

0

∣∣∣∣g(t+ h, s)− g(t, s)

h
− ∂g(t, s)

∂t

∣∣∣∣ d(x(s), 0̂)ds

+
1

h

∫ t+h

t

(g(t+ h, s)− g(t, s))d(x(s), 0̂)ds

+
1

h

∫ t+h

t

g(t, s)d(x(s), x(t))ds

+
1

h

∫ t+h

t

|g(t, s)− g(t, t)|d(x(t), 0̂)ds→ 0 as h ↓ 0.

by the continuity of x(t) and the results in analysis. Similarly, we have

d

(
1

h
⊗ (G(t)−G(t− h), g(t, t)x(t) +

∫ t

0

∂g(t, s)

∂t
x(s)ds

)
→ 0 as h ↓ 0.

Therefore lim
h→0

1
h ⊗ (G(t+h)−G(t)) and lim

h→0

1
h ⊗ (G(t)−G(t−h)) exist. It follows

that G′(t) exists and (7) holds. �

Lemma 2.13. Let 0 < q < 1.Then the following assertions are true:
a) If y(t) ∈ C1−q([0, a], E), then

DqIqy(t) = y(t) for all t ∈ (0, a].

b) If I1−qy(t) ∈ C1
1−q([0, a], E), then

IqDqy(t) = y(t)− tq−1

Γ(q)
I1−qy(0) for all t ∈ (0, a].
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Proof. a) Using the definition of fractional derivative, Proposition 2.11 and Theo-
rem 2.7, we obtain

DqIqy(t) =
d

dt
I1−qIqy(t) =

d

dt
I1y(t)

=
d

dt

∫ t

0

y(s)ds = y(t).

b)By the definition of fractional integral and Lemma 2.12, we get

IqDqy(t) =
1

Γ(q)

∫ t

0

(t− s)q−1Dqy(s)ds

=
1

Γ(q + 1)

d

dt

∫ t

0

(t− s)qDqy(s)ds.

Now by Theorem 2.9, we have

1

Γ(q + 1)

∫ t

0

(t− s)qDqy(s)ds =
1

Γ(q + 1)

∫ t

0

(t− s)q d
ds
I1−qy(s)ds

=
1

Γ(q + 1)
[(t− s)qI1−qy(s)|t0

+q

∫ t

0

(t− s)q−1I1−qy(s)ds]

=
1

Γ(q + 1)
[−tqI1−qy(0) + qΓ(q)Iq(I1−qy(t))]

=
−tq

Γ(q + 1)
I1−qy(0) + I1y(t).

Hence

IqDqy(t) = y(t)− tq−1

Γ(q)
I1−qy(0).

�
3. Existence and Uniqueness

Consider the following fuzzy fractional differential equation

Dqy(t) = f(t, y(t)), (8)

where 0 < q < 1, and f : [0, a]× E → E is continuous on (0, a]× E.
A fuzzy function y : (0, a]→ E is a solution of fuzzy fractional differential equation
(8) if it is continuous on (0, a] and

Dqy(t) = f(t, y(t)),

for all t ∈ (0, a]. We can associate with the fuzzy fractional differential equation
with the following initial condition

lim
t→0+

t1−qy(t) = y0 ∈ E. (9)
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Remark 3.1. Let 0 < q < 1 and y(t) ∈ C1−q((0, a], E). Using a similar proof as in
Lemma 4.1 in [4], we have
a) If

lim
t→0+

t1−qy(t) = b ∈ E,

then

I1−qy(0+) := lim
t→0+

I1−qy(t) = bΓ(q).

b) If

lim
t→0+

I1−qy(t) = c ∈ E,

and if there exists the limit lim
t→0+

t1−qy(t), then

lim
t→0+

t1−qy(t) =
c

Γ(q)
.

Lemma 3.2. Let 0 < q < 1, K > 0, and a > 0. Define

G = {(t, y) ∈ [0, a]× E : y ∈ E for t = 0 and d(t1−qy, y0) < K else },

and assume that the function f : G → E is a continuous and bounded in G and
there exists a constant A > 0 such that,

d(f(t, u), f(t, v)) ≤ Ad(u, v),

for all (t, u), (t, v) ∈ G. If y(t) ∈ C((0, a], E), then y(t) satisfies the relations (8)
and (9) if and only if y(t) satisfies the integral equation

y(t) = y0t
q−1 + Iqf(t, y(t)). (10)

Proof. Suppose y(t) ∈ C((0, a], E) satisfy (8),(9), we define u(t) := f(t, y(t)). By
assumption, u is a continuous function and

u(t) = f(t, y(t)) = Dqy(t) =
d

dt
(I1−qy)(t).

Thus d
dt (I

1−qy)(t) ∈ C1−q([0, a], E). Therefore I1−qy(t) ∈ C1
1−q([0, a], E). Applying

Iq to both sides of (8) and using Lemma 2.13 (b), we have

y(t)− tq−1

Γ(q)
I1−qy(0) = Iqf(t, y(t)).

Therefore by Lemma 3.1,

y(t) = y0t
q−1 + Iqf(t, y(t)).

Suppose that y ∈ C((0, a], E) satisfy (10). Applying Dq to both sides of (10) and
then using Lemma 2.13(a), we obtain

Dqy(t) = Dq(y0t
q−1) +DqIqf(t, y(t))

= f(t, y(t)).

�The following theorem help us to prove the next result.
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Theorem 3.3. [9] Let (U, d) be non empty complete metric space, and let βn ≥ 0

for all n ∈ {0, 1, 2, ...} be such that
∞∑
n=0

βn converges. Moreover, let the mapping

T : U → U satisfy the inequality

d(Tnu, Tnv) ≤ βnd(u, v)

for all n ∈ N and for all u, v ∈ U . Then the operator T has a unique fixed point
u∗ ∈ U. Furthermore, for any u0 ∈ U, the sequence {Tnu0}∞n=1 converges to the
above fixed point u∗.

Theorem 3.4. Let 0 < q < 1, K > 0 and a∗ > 0. Define

G = {(t, y) ∈ [0, a∗]× E : y ∈ E for t = 0 and d(t1−qy, y0) < K},
and assume that the function f : G → E is a continuous and bounded in G and
there exists a constant A > 0 such that,

d(f(t, u), f(t, v)) ≤ Ad(u, v), (11)

for all (t, u), (t, v) ∈ G. Then there exists a unique solution y(t) ∈ C((0, a], E) to
the Cauchy problem (8) and (9), where

a := min

{
a∗, ã,

(
Γ(q + 1)K

M

)}
,

with M := sup
(t,y)∈G

d(f(t, y), 0̂) and ã being a positive number such that

ã <

(
Γ(2q)

Γ(q)A

) 1
q

.

Proof. Define the set

U := {y ∈ C((0, a], E) : sup
t∈[0,a]

d(t1−qy, y0) ≤ K}.

U is a closed subset of the complete metric space C1−q([0, a], E). Therefore U is a
complete metric space. We define the operator T : U → C1−q([0, a], E) by

Ty(t) := y0t
q−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, y(s))ds.

In order to prove the desired result, it is sufficient to prove that the operator T
has a unique fixed point. Note that for y ∈ U, Ty is also a continuous function on
(0, a]. Moreover,

d(t1−qTy(t), y0) ≤ d

(
t1−q

Γ(q)

∫ t

0

(t− s)q−1f(s, y(s))ds, 0̂

)
≤ t1−q

Γ(q)

∫ t

0

(t− s)q−1d(f(s, y(s)), 0̂)ds

≤ t1−qM

Γ(q)

∫ t

0

(t− s)q−1ds

≤ aM

Γ(q + 1)
≤ K
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for t ∈ (0, a]. This shows that the operator T maps the set U into itself. Now we
show by induction that for y, z ∈ U,

‖Tny − Tnz‖1−q ≤
(
AaqΓ(q)

Γ(2q)

)n
‖y − z‖1−q. (12)

For n = 0, this statement is trivially true. Suppose that (12) is true for n ≥ 1.
Then from inequality (11), we have

‖Tn+1y − Tn+1z‖1−q
= sup

t∈[0,a]

t1−qd((Tn+1y(t)− Tn+1z(t)), 0̂)

= sup
t∈[0,a]

t1−qd((TTny(t)− TTnz(t)), 0̂)

= sup
t∈[0,a]

t1−q

Γ(q)
d

(∫ t

0

(t− s)q−1(f(s, Tny(s))− f(s, Tnz(s)))ds, 0̂

)
≤ sup

t∈[0,a]

t1−q

Γ(q)

∫ t

0

(t− s)q−1d(f(s, Tny(s))− f(s, Tnz(s))), 0̂)ds

≤ A

Γ(q)
sup
t∈[0,a]

t1−q
∫ t

0

(t− s)q−1d(Tny(s)− Tnz(s)), 0̂)ds

≤ A

Γ(q)
sup
t∈[0,a]

t1−q
∫ t

0

(t− s)q−1sq−1s1−qd(Tny(s)− Tnz(s)), 0̂)ds

≤ A

Γ(q)
‖Tny − Tnz‖1−q sup

t∈[0,a]

t1−q
∫ t

0

(t− s)q−1sq−1ds

=

(
AaqΓ(q)

Γ(2q)

)
‖Tny − Tnz‖1−q.

Now using induction we get (12). Therefore we can apply Theorem 3.3 with βn =(
AaqΓ(q)

Γ(2q)

)n
. It remains to show that the series

∞∑
n=0

βn is convergent. Since a ≤ ã

and the definition of ã implies that
(
AaqΓ(q)

Γ(2q)

)
< 1. Thus by Theorem 3.3, there

exists a unique solution of the integral equation (10). Then using Lemma 3.2 yields
the existence and uniqueness of the Cauchy problem (8) and (9). �

4. Examples

Example 4.1. {
Dqy(t) = λy(t) + b(t)
lim
t→0+

t1−qy(t) = (1|3|4),

where t ∈ [0, a], 0 < q ≤ 1, λ ≥ 0, and lim
t→0+

t1−qy(t) = (1|3|4) ∈ E is a fuzzy

triangular number, that is, lim
t→0+

t1−qy(t) = (2α+ 1, 4− α) for α ∈ (0, 1]. If we put
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y(t) = (y1(t, α), y2(t, α)), then Dqy(t) = (Dqy1(t, α), Dqy2(t, α)). Thus we have{
Dqy1(t, α) = λy1(t, α) + b1(t, α),
lim
t→0+

t1−qy1(t, α) = 2α+ 1,
(13)

and {
Dqy2(t, α) = λy2(t, α) + b2(t, α),
lim
t→0+

t1−qy2(t, α) = 4− α,
(14)

solution of (13) and (14) are given by (see [14])

y1(t, α) =
2α+ 1

Γ(q)
tq−1Eq,q(λt

q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b1(s, α)ds,

and

y2(t, α) =
4− α
Γ(q)

tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b2(s, α)ds,

where

Eq,q(λt
q) =

∞∑
n=0

(λtq)n

Γ(q(n+ 1))
.

Example 4.2. {
Dqy(t) = −λy(t) + b(t), λ ≥ 0
lim
t→0+

t1−qy(t) = (1|3|4).
(15)

We obtain the following system

Dqy1(t, α) = −λy2(t, α) + b1(t, α), lim
t→0+

t1−qy1(t, α) = 2α+ 1,

Dqy2(t, α) = −λy1(t, α) + b2(t, α), lim
t→0+

t1−qy2(t, α) = 4− α,

or
Dqz(t) = Az(t) +B(t),

lim
t→0+

t1−qz(t) = c, (16)

where

z(t) =

y1(t, α)

y2(t, α)

 , A =

 0 −λ

−λ 0

 , B(t) =

 b1(t, α)

b2(t, α)

 c =

2α+ 1

4− α

 .
Using the same method as in [12], we obtain the solution of (16). It is given by

z(t) = tq−1Eq,q(At
q)c+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)B(s)ds,

where

Eq,q(At
q) =

∑∞
i=0

(Atq)i

Γ(q(i+1)) =

 W1(t) 0

0 W1(t)

+

 0 −W2(t)

−W2(t) 0

 ,
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and

W1(t) =

∞∑
k=0

(λtq)2k

Γ(q(2k + 1))
, W2(t) =

∞∑
k=0

(λtq)2k+1

Γ(2q(k + 1))
.

Let

S1(t) =

∞∑
k=0

λ2kt(2k+1)q−1

Γ(q(2k + 1))
, S2(t) =

∞∑
k=0

λ2k+1t2(k+1)q−1

Γ(2q(k + 1))
.

Then

tq−1Eq,q(At
q)c =

 S1(t) −S2(t)

−S2(t) S1(t)

2α+ 1

4− α

 =

 U1(t, α)

U2(t, α)


where

U1(t, α) = S1(t)(2α+ 1)− S2(t)(4− α), U2(t, α) = S1(t)(4− α)− S2(t)(2α+ 1)

if we take
V1(t, s, α) = S1(t− s)b1(s, α)− S2(t− s)b2(s, α),
V2(t, s, α) = S1(t− s)b2(s, α)− S2(t− s)b1(s, α)),

then we get∫ t

0

(t− s)q−1Eq,q(A(t− s)q)B(s)ds =

 ∫ t0 V1(t, s, α)ds∫ t
0
V2(t, s, α)ds

 .
Then we obtain

y1(t, α) = U1(t, α) +
∫ t

0
V1(t, s, α)ds,

y2(t, α) = U2(t, α) +
∫ t

0
V2(t, s, α)ds.

It easy to see that (y1(t, α), y2(t, α)) define a fuzzy number, and therefore it is the
solution of the fuzzy fractional differential equation (14).
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