تعداد نشریات | 30 |
تعداد شمارهها | 691 |
تعداد مقالات | 6,782 |
تعداد مشاهده مقاله | 11,081,222 |
تعداد دریافت فایل اصل مقاله | 7,478,875 |
Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 11، شماره 2، تیر 2014، صفحه 71-88 اصل مقاله (396.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2014.1503 | ||
نویسندگان | ||
S. S. Behzadi* 1؛ T. Allahviranloo2؛ S. Abbasbandy3 | ||
1Department of Mathematics, Islamic Azad University, Qazvin Branch, Qazvin, Iran. | ||
2Department of Mathematics, Science and Research Branch, Is- lamic Azad University, Tehran, Iran. | ||
3Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
چکیده | ||
In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterra integro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of the solution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example. | ||
کلیدواژهها | ||
acobi polynomials؛ Airfoil polynomials؛ Collocation method؛ Fuzzy integro-differential equations؛ Abel and Volterra integral equations؛ Generalized differentiability | ||
مراجع | ||
\bibitem{7} S. Abbasbandy and M. S. Hashemi, {\it Fuzzy integro-differential equations: formulation and solution using the variational iteration method}, Nonlinear Science Letters A, { \bf 1} (2010), 413-418. \bibitem{5} T. Allahviranloo, S. Abbasbandy, O. Sedaghgatfar and P. Darabi, {\it A new method for solving fuzzy integro-differential equation under generalized differentiability}, Neural Computing and Applications, {\bf 21} (2012), 191-196. \bibitem{6} T. Allahviranloo, M. Khezerloo, O. Sedaghatfar and S. Salahshour, {\it Toward the existence and uniqueness of solutions of second-order fuzzy volterra integro-differential equations with fuzzy kernel}, Neural Computing and Applications, DOI 10.1007/s00521-012-0849-x, 2012. \bibitem{9} T. Allahviranloo, M. Khezerloo, M. Ghanbari and S. Khezerloo,{\it The homotopy perturbation method for fuzzy Volterra integral equations}, International Journal of Computational Cognition, {\bf 8} (2010), 31-37. \bibitem{10} R. Alikhani, F. Bahrami and A. Jabbari, {\it Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations}, Nonlinear Analysis, {\bf 75} (2012), 1810-1821. \bibitem{28} T. Allahviranloo, S. Abbasbandy and S. Salahshour, {\it A new method for solving fuzzy integro-differential equation under generalized differentiability}, Neural Computing and Applications, {\bf 21} (2012), 191-196. \bibitem{4} E. Babolian, H. Sadeghi Goghary and S. Abbasbandy, {\it Numerical solution of linear fredholm fuzzy integral equations of the second kind by Adomian method}, Applied Mathematics and Computation, {\bf 161} (2005), 733-744. \bibitem{17} B. Bede and S. G. Gal, {\it Generalizations of differentiability of fuzzy-number valued function with application to fuzzy differential equations}, Fuzzy Sets and Systems, {\bf 151} (2005), 581-599. \bibitem{22} B. Bede, Note on {\it Numerical solutions of fuzzy differential equations by predictor–corrector method}, Information Sciences, {\bf 178} (2008), 1917-1922. \bibitem{25} A. M. Bijura, {\it Error bounded analysis and singularly perturbed Abel-Volterra equations}, Journal of Applied Mathematics, {\bf 6} (2004), 479-494. \bibitem{18} Y. Chalco-Cano and H. Román-Flores, {\it On new solutions of fuzzy differential equations}, Chaos Soliton and Fractals, {\bf 38} (2006), 112-119. \bibitem{16} R. N. Desmarais and S. R. Bland, {\it Tables of properties of airfoil polynomials}, Nasa Reference Publication, 1343, September 1995. \bibitem{23} D. Dubois and H. Prade,{\it Theory and application}, Academic Press, 1980. \bibitem{2} M. Friedman, M. Ma and A. Kandel, {\it Numerical methods for calculating the fuzzy integral}, Fuzzy Sets and Systems, {\bf83} (1996), 57–62. \bibitem{12} R. Goetschel and W. Voxman, {\it Elementary calculus}, Fuzzy Sets Syst, {\bf 18} (1986), 31-43. \bibitem{1} M. Jahantigh, T. Allahviranloo and M. Otadi,{\it Numerical solution of fuzzy integral equation}, Applied Mathematical Sciences, {\bf2} (2008), 33-46. \bibitem{14} A. Kauffman and M. M. Gupta, {\it Introduction to fuzzy arithmetic: theory and application}, Van Nostrand Reinhold. New York, 1991. \bibitem{24} H. Kim and R. Sakthivel, {\it Numerical solution of hybrid fuzzy differential equations using improved predictor-corrector method}, Communications in Nonlinear Science and Numerical Simulation, {\bf 17} (2012), 3788-3794. \bibitem{20} X. Li and T. TANG, {\it Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind}, Frontiers of Mathematics in China, {\bf 7} (2012), 69–84. \bibitem{8} N. Mikaeilvand, S. Khakrangin and T. Allahviranloo, {\it Solving fuzzy Volterra integro-differential equation by fuzzy differential transform method}, EUSFLAT- LFA, (2011), 891-896. \bibitem{11} A. Molabahrami, A. Shidfar and A. Ghyasi, {\it An analytical method for solving linear Fredholm fuzzy integral equations of the second kind}, Computers and Mathematics with Applications, {\bf 61} (2011), 2754-2761. \bibitem{13} M. L. Puri and D. Ralescu, { \it Fuzzy random variables}, Journal of Mathematical Analysis and Applications, { \bf 114} (1986), 409-422. \bibitem{19} S. Sadigh Behzadi, { \it Solving fuzzy nonlinear Volterra-Fredholm integral equations by using homotopy analysis and Adomian decomposition methods}, Journal of Fuzzy Set Valued Analysis, { \bf 2011}(2011), 1-13. \bibitem{21} S. Sadigh Behzadi, T. Allahviranloo and S. Abbasbandy, {\it Solving fuzzy second-order nonlinear Volterra–Fredholm integro-differential equations by using Picard method}, Neural Computing and Applications, DOI 10.1007/s00521- 012 - 0926 -1, 2012. \bibitem{26} S. Sadigh Behzadi, T. Allahviranloo and S. Abbasbandy, {\it The use of fuzzy expansion method for Solving Fuzzy linear Volterra-Fredholm Integral Equations}, Journal of Intelligent and Fuzzy Systems, DOI:10.3233/IFS-130861, 2013. \bibitem{27} S. Salahshour and T. Allahviranloo, {\it Application of fuzzy differential tansform method for solving fuzzy Volterra integral equations}, Applied Mathematical Modelling, {\bf 37} (2013), 1016-1027. \bibitem{29} S. Salahshour, T. Allahviranloo and S. Abbasbandy, {\it Solving fuzzy fractional differential equations by fuzzy Laplace transforms}, Communication in Nonlinear Science and Numerical Simulation, {\bf 17} (2012), 1372-1381. \bibitem{3} M. Sugeno, {\it Theory of fuzzy integrals and its application}, Ph.D. Thesis, Tokyo Institute of Technology, 1974. \bibitem{15} L. A. Zadeh, {\it Information and control}, Fuzzy Sets and Systems, {\bf 8} (1965), 338-353. | ||
آمار تعداد مشاهده مقاله: 2,910 تعداد دریافت فایل اصل مقاله: 1,396 |