تعداد نشریات | 27 |
تعداد شمارهها | 587 |
تعداد مقالات | 6,019 |
تعداد مشاهده مقاله | 8,771,039 |
تعداد دریافت فایل اصل مقاله | 5,785,097 |
Fixed Points of Fuzzy Generalized Contractive Mappings in Fuzzy Metric Spaces | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 10، دوره 11، شماره 2، تیر 2014، صفحه 113-120 اصل مقاله (347.9 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2014.1506 | ||
نویسنده | ||
A. Amini-Harandi ![]() | ||
Department of Pure Mathematics, University of Shahrekord, Shahrekord, 88186-34141 Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran | ||
چکیده | ||
In this paper, we introduce a new concept of fuzzy generalized contraction and give a fixed point result for such mappings in the setting of fuzzy M-complete metric spaces. We also give an affirmative partial answer to a question posed by Wardowski [D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Set Syst., {\bf 222}(2013), 108-114]. Some examples are also given to support our main result. | ||
کلیدواژهها | ||
Fuzzy metric space؛ Fuzzy generalized contractive mapping؛ Fixed point | ||
مراجع | ||
\bibitem{GV} A. George and P. Veeramani, {\it On some results in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 64} (1994), 395-399. \bibitem{G} M. Grabiec, {\it Fixed points in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 27} (1988), 385-389. \bibitem{GS} V. Gregori and A. Sapena, {\it On fixed point theorems in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 125} (2002), 245-252. \bibitem{HP1} O. Had\v{z}i\'{c} and E. Pap, {\it A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 127} (2002), 333-344. \bibitem{HP2} O. Had\v{z}i\'{c} and E. Pap, {\it Fixed point theory in probabilistic metric spaces}, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, {\bf 536} (2001). \bibitem{KS} O. Kaleva and S. Seikkala, {\it On fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 12} (1984), 215-229. \bibitem{KMP} E. P. Klement, R. Mesiar and E. Pap, {\it Triangular Norms}, Trends in Logics, Kluwer Academic Publishers, Dordrecht, Boston, London, {\bf8} (2000). \bibitem{KM} I. Kramosil and J. Michalek, {\it Fuzzy metrics and statistical metric spaces}, Kybernetika, {\bf 11} (1975), 336-344. \bibitem{M1} D. Mihet, {\it A Banach contraction theorem in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 144} (2004), 431-439. \bibitem{M2} D. Mihet, {\it On fuzzy contractive mappings in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 158} (2007), 915-921. \bibitem{M3} D. Mihet, {\it Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 159} (2008), 739-744. \bibitem{SS} B. Schweizer and A. Sklar, {\it Statistical metric spaces}, Pacific Journal of Mathematics, {\bf 10} (1960), 313-334. \bibitem{S} S. Sharma, {\it Common fixed point theorems in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 127} (2002), 345-352. \bibitem{VV} R. Vasuki and P. Veeramani, {\it Fixed point theorems and Cauchy sequences in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 135} (2003), 415-417. \bibitem{V} C. Vetro, {\it Fixed points in weak non-Archimedean fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 162} (2011), 84-90. \bibitem{W} D. Wardowski, {\it Fuzzy contractive mappings and fixed points in fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 222} (2013), 108-114. \bibitem{XZJ} J. Z. Xiao, X. H. Zhu and X. Jin, {\it Fixed point theorems for nonlinear contractions in Kaleva-Seikkala's type fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 200} (2012), 65-83. | ||
آمار تعداد مشاهده مقاله: 2,092 تعداد دریافت فایل اصل مقاله: 1,289 |