تعداد نشریات | 27 |
تعداد شمارهها | 565 |
تعداد مقالات | 5,815 |
تعداد مشاهده مقاله | 8,126,747 |
تعداد دریافت فایل اصل مقاله | 5,442,742 |
SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 3، دوره 7، شماره 1، اردیبهشت 2010، صفحه 15-31 اصل مقاله (480.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2010.158 | ||
نویسندگان | ||
Fatemeh Moayedi ![]() | ||
1Reza Boostani, Ali Reza Kazemi and Serajodin Katebi, Vision and Image Processing Laboratory, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran | ||
2Board of Science, Azad Universitiy Branch of Jahrom, Iran | ||
چکیده | ||
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from the superiority of the contourlet method to the state of the art multi-scale techniques. A genetic algorithm is applied for feature weighting with the objective of increasing classification accuracy. Although fuzzy classifiers are interpretable, the majority are order sensitive and suffer from the lack of generalization. In this study, a kernel SVM is integrated with a nerofuzzy rule-based classifier to form a support vector based fuzzy neural network ( SVFNN). This classifier benefits from the superior classification power of SVM in high dimensional data spaces and also from the efficient human-like reasoning of fuzzy and neural networks in handling uncertainty information. We use the Mammographic Image Analysis Society (MIAS) standard data set and the features extracted of the digital mammograms are applied to the fuzzy-SVM classifiers to assess the performance. Our experiments resulted in 95.6%,91.52%,89.02%, 85.31% classification accuracy for the subclass FSVM, SVFNN, fuzzy rule based and kernel SVM classifiers respectively and we conclude that the subclass fuzzy-SVM is superior to the other classifiers. | ||
کلیدواژهها | ||
Mammography؛ Support vector based fuzzy neural network؛ Fuzzy support vector machine؛ Contourlet | ||
مراجع | ||
[1] R. A. Aliev, B. G. Guirimov and R. R. Aliev,A neuro-fuzzy object classifier with modified distance measure estimator, Iranian Journal of Fuzzy Systems, 1(1) (2004), 5-15. [2] K. Bovis, S. Singh, J. Fieldsend and C. Pinder,Identification of masses in digital mammograms with MLP and RBF nets, IEEE Trans. on Image Processing, 1 (2005), 342-347. [3] E. J. Candes and D. L. Donoho,Curvelets: a surprisingly effective non adaptive representation for objects with edges, Saint-Malo Proceedings, Nashville, TN: Vanderbilt Univ, 2000. [4] O. Cordon and M. J. del Jesus and F. Herrera,Genetic learning of fuzzy rule based classification systems cooperating with fuzzy reasoning methods, Technical Report, DECSAI-970130,1997. [5] M. N. Do and M. Vetterli,The contourlet transform: an efficient directional multi-resolution image representation, IEEE Trans. on Image Processing, 14(12) (2005), 2091-2106. [6] I. El-Naqa, Y. Yang, M. Wernick, N. Galatsanos and R. Nishikawa,A support vector machine approach for detection of microcalcifications, IEEE Trans. on Medical Imaging, 21(12)(2002), 1552-1563. [7] E. A. Fischer, J. Y. Lo and M. K. Markey,Bayesian networks of BI-RADS descriptors for breast lesion classification, IEEE EMBS, San Francisco, 4 (2004), 3031-3034. [8] O. J. Freixenet, A. Bosch, D. Raba and R. Zwiggelaar,Automatic classification of breast tissue, Lecture Notes in Computer Science, Pattern Recognition and Image Analysis, (2000),431-438. [9] W. H. Land, J. L. Wong Daniel, W. McKee, T. Masters and F. R Anderson,Breast cancer computer aided diagnosis (CAD) using a recently developed SVM/GRNN oracle hybrid, IEEE International Conference on Systems, Man and Cybernetics, 2003. [10] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung and N. Kumar, Support-vector-based fuzzy neural network for pattern classification, IEEE Trans. on Fuzzy Systems, 14(1) (2006), 31-41. [11] A. O. Malagelada, Automatic mass segmentation in mammographic images, PhD Thesis, Universitat de Girona, Spain, 2004. [12] E. G. Mansoori, M. J. Zolghadri and S. D. Katebi,Using distribution of data to enhance prformance of fuzzy classification systems, Iranian Journal of Fuzzy Systems, 4(1) (2007),21-36. [13] E. G. Mansoori, M. J. Zolghadri, S. D. Katebi, H. Mohabatkar, R. Boostani and M. H.Sadreddini, Generating fuzzy for protein classification, Iranian Journal of Fuzzy Systems,5(2)(2008), 21-33. [14] F. Moayedi, Z. Azimifar, R. Boostani and S. Katebi,Contourlet based mammography mass classification, Lecture Notes in Computer Science, Image Analysis and Recognition, 4633(2007), 923-934. [15] F. Moayedi, R. Boostani, Z. Azimifar and S. Katebi,A support vector based fuzzy neural network approach for mass classification in mammography, International Conference on Digital Signal Processing, Britain, 2007. [16] R. Mousa, Q. Munib and A. Mousa,Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural netwrok, IEEE Trans. on Image Processing, 28(4) (2005), 713-723. [17] D. Y. Po and N. Do, Directional multiscale modeling of images using the contourlet transform, IEEE Trans. on Image Processing, (2006), 1-11. [18] D. Raba, A. Oliver, J. Marti, M. Peracaula and J. Espunya, Breast segmentation with pectoral muscle suppression on digital mammograms, Springer-Verlag: Medical Imaging: Pattern Recognition and Image Analysis, 3523 (2005), 471-478. [19] M. Roffilli, Advanced machine learning techniques for digital mammography, Technical Report, Department of Computer Science University of Bologna, Italy, 2006. [20] M. S. B. Sehgal, I. Gondal and L. Dooley, Support vector machine and generalized regression neural network based classification fusion models for cancer diagnosis, proceedings in Fourth IEEE International Conference on Hybrid Intelligent System, Computer Society, 2004. [21] L. Semler and L. Dettori, A comparison of wavelet-based and ridgelet-based texture classification of tissues in computed tomography, International Conference on Computer Vision Theory and Applications, 2006. [22] L. Semler, L. Dettori and J. Furst, Wavelet-based texture classification of tissues in computed tomography, IEEE International Symposium on Computer-Based Medical Systems, 2005. [23] J. L. Starck, E. J. Candes and D. L. Donoho, The curvelet transform for image denoising, IEEE Trans. on Image Processing, 11(6) (2002), 670-684. [24] C. Varelaa, P. G. Tahocesb, A. J. Mndezc, M. Soutoa and J. J. Vidala, Computerized detection of breast masses in digitized mammograms, Computers in Biology and Medicine, 37(2)(2007), 214-226. [25] W. Xiaodan and W. Chongming, Using membership function to improve multi-class SVM classification, ICSP Proceeding, China, 2004. [26] Z. Yu and C. Bajaj, A fast and adaptive for image contrast enhancement, IEEE International Conference on Image Processing, 2004. [27] M. Zhu and A. M. Martinez, Subclass discriminant analysis, IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(8) (2006), 1247-1286. | ||
آمار تعداد مشاهده مقاله: 2,778 تعداد دریافت فایل اصل مقاله: 1,996 |