تعداد نشریات | 26 |
تعداد شمارهها | 551 |
تعداد مقالات | 5,712 |
تعداد مشاهده مقاله | 7,971,412 |
تعداد دریافت فایل اصل مقاله | 5,353,170 |
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\\ time-varying delays | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 11، شماره 4، پاییز 2014، صفحه 1-13 اصل مقاله (402.91 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2014.1620 | ||
نویسنده | ||
M. Syed Ali ![]() | ||
Department of Mathematics, Thiruvalluvar University, Vellore - 632 106, Tamilnadu, India | ||
چکیده | ||
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varying delays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural networks with time-varying delays. The results are related to the size of delay and impulses. Finally, numerical examples and simulations are given to demonstrate the correctness of the theoretical results. | ||
کلیدواژهها | ||
Global asymptotic stability؛ Impulsive perturbations؛ Stochastic fuzzy recurrent neural networks؛ Time-varying delays | ||
مراجع | ||
bibitem{SA2} S. Arik, {it An analysis of exponential stability of delayed neural networks with time varying delays}, Neural Netw., textbf{17} (2004), 1027--1031. bibitem{SA1} S. Arik, {it Novel results for global robust stability of delayed neural networks}, Chaos Solitons Fractals, textbf{39} (2009), 1604--1614. bibitem{Be} R. Belohlavek, {it Fuzzy logical bidirectional associative memory}, Information Sciences, textbf{128} (2000), 91--103. bibitem{BF} S. A. Billings and C. F. Fung, {it Recurrent radial basis function networks for adaptive noise cancellation}, Neural Netw., textbf{8} (1995), 273 -- 290. bibitem{BI} J. J. Blake, L. P. Maguire, T. M. McGinnity, B. Roche and L. J. McDaid, {it The implementation of fuzzy systems, neural networks and fuzzy neural networks using FPGAs}, Information Sciences, {bf 112} (1998), 151--168. bibitem{BGFB} B. Boyd, L. Ghoui, E. Feron and V. Balakrishnan, {it Linear Matrix Inequalities in System and Control Theory}, philadephia, PA, SIAM, 1994. bibitem{CF} Y. Y. Cao and P. M. Frank, {it Analysis and synthesis of nonlinear time-delay system via fuzzy control approach}, IEEE Trans Fuzzy Syst., textbf{8} (2000), 200 –- 211. bibitem{GNLC} P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, {it LMI control toolbox user's guide}, Massachusetts, The Mathworks, 1995. bibitem{GE} Y. Gao and M. J. Er, {it Modelling, control, and stability analysis of non-linear systems using generalized fuzzy neural networks}, Internat. J. Systems Science, textbf{34} (2003), 427 -- 438. bibitem{GKW} C. L. Giles, G. M. Kuhn and R. J. Williams, {it Dynamic recurrent neural networks: Theory and applications}, IEEE Trans. Neural Netw., textbf{5} (1994), 153 -- 156. bibitem{ZHG} Z. H. Guan, J. Lam and G. Chen, {it On impulsive autoassociative neural networks}, Neural Netw., textbf{13} (2000), 63–69. bibitem{H} J. Hale and S. M. Verduyn Lunel, {it Introduction to Functional Differential Equations}, New York, Springer, 1993. bibitem{MH} M. Han, Y. Sun and Y. Fan, {it An improved fuzzy neural network based on T–S model}, Expert Syst. Appl., textbf{34} (2008), 2905–-2920. bibitem{YYH} Y. Y. Hou, T. L. Liao and Y. Y. Yan, {it Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time varying delays}, IEEE Trans. Syst. Man Cybrn. Part B, {bf 37} textbf{(3)} (2007), 720--726. bibitem{HW} S. Hu and J. Wang, {it Global asymptotic stability and global exponential stability of continuous time recurrent neural networks}, IEEE Trans. Automat. Control, textbf{47} (2002), 802 -- 807. bibitem{HLM} S. Hu, X. Liao and X. Mao, {it Stochastic Hopfield neural networks}, J. Phys. A: Math. Gen., textbf{9} (2004), 47 -- 53. bibitem{HHL} H. Huang, D. Ho and J. Lam, {it Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays}, IEEE Trans. Circ. Syst. II, Exp. Briefs, textbf{52} (2005), 251 -- 255. bibitem{HC} H. Huang and J. Cao, {it Exponential stability analysis of uncertain stochastic neural networks with multiple delays}, Nonlinear Anal: R W A, textbf{8} (2007), 646--653. bibitem{IJFS1} M. Khasheri, M. Bijari and S. R. Hejazi, {it An extented fuzzy artificial neural networks model for time series forecasting}, Iranain Journal of Fuzzy Systems, {bf 8} textbf{(3)}, (2011), 45--66. bibitem{L} V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, {it Theory of Impulsive Differential Equations}, Singapore, World Scientific, 1989. bibitem{VL} V. Lakshmikantham and X. Z. Liu, {it Impulsive hybrid systems and stability theory}, International Journal of Nonlinear Differential Equations, textbf{5}, (1999), 9–17. bibitem{LC1} J. Liang and J. Cao, {it Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays}, Phys. Lett. A, textbf{318} (2003), 53 -– 64. bibitem{LM} X. Liao and X. Mao, {it Exponential stability and instability of stochastic neural networks}, Stoch. Anal. Appl., textbf{14} (1996), 165 –- 185. bibitem{LZ} X. D, Liu and Q. L. Zhang, {it New approaches to H1 controller designs based on fuzzy observers for T–S fuzzy systems via LMI}, Automatica, textbf{39} (2003), 1571 –- 1582. bibitem{BL} B. Liu and P. Shi, {it Delay-range-dependent stability for fuzzy BAM neural networks with time-varying delays}, Phys. Lett. A, textbf{373} (2009), 1830--1838. bibitem{IJFS2} J. Liu, Z. Gu, H. Han and S. Hu, {it T- S fuzzy model - based memory control for discrete - time system with random input delay}, Iran. J. Fuzzy Syst., textbf{8(3)} (2011), 67-79. bibitem{LC} X. Lou and B. Cui, {it Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays}, Fuzzy sets and systems, textbf{158} (2007), 2746 -- 56. bibitem{XM} X. Mao, N. Koroleva and A. Rodkina, {it Robust stability of uncertain stochastic delay differential equations}, Systems Control. lett., textbf{35} (1998), 325 -– 336. bibitem{MS1} M. Syed Ali and P. Balasubramaniam, {it Robust stability of uncertian stochastic fuzzy BAM neural networks with time varying delay}, Phys. Lett. A, textbf{372} (2008), 5159--5166. bibitem{MS2} M. Syed Ali and P. Balasubramaniam, {it Stability analysis of uncertain fuzzy Hopfield neural networks with time delays}, Communic. Nonlin. Numeric. Simul., textbf{14} (2009), 2776--2783. bibitem{MS3} M. Syed Ali and P. Balasubramaniam, {it Robust stability of uncertain fuzzy Cohen-Grossberg BAM neural networks with time-varying delays}, Expert Syst. Appl., textbf{36} (2009), 10583--10588. bibitem{TS} T. Takagi and M. Sugeno, {it Fuzzy identification of systems and its applications to modeling and control}, IEEE Trans. Syst. Man, Cybern., textbf{15} (1985), 116 -- 132. bibitem{TY1} T. Yang, {it Impulsive control}, IEEE Trans. Automat. Control, textbf{44}(5) (1999), 1081-1083. bibitem{TY2} T. Yang, {it Impulsive system and control:theory and applications}, Huntington, NY, Nova Science Publishers, 2001. bibitem{ZP} Y. Zhang and A. H. Pheng, {it Stability of fuzzy systems with bounded uncertain delays}, IEEE Trans. Fuzzy Syst., textbf{10} (2002), 92 -– 97. bibitem{Z1} H. Zhang, {it Robust exponential stability of recurrent neural networks with multiple time varying delays}, IEEE Trans. Circ. Syst. II, Exp. Briefs, textbf{54} (2007), 730 -- 734. bibitem{YZ1} Y. Zhang and J. T. Sun,{it Boundedness of the solutions of impulsive differential systems with time-varying delay}, Appl. Math. Comput., textbf{154} (2004), 279–288. bibitem{YZ2} Y. Zhang and J. T. Sun, {it Stability of impulsive neural networks with time delays}, Phys. Lett. A, textbf{348} (2005), 44–-50. bibitem{QZ} Q. Zhang, X. Wei and J. Xu, {it Delay-dependent exponential stability of cellular neural networks with time varying delays}, Chaos Solitons Fractals, textbf{23} (2005), 1363-1369. | ||
آمار تعداد مشاهده مقاله: 2,037 تعداد دریافت فایل اصل مقاله: 1,333 |