تعداد نشریات | 31 |
تعداد شمارهها | 700 |
تعداد مقالات | 6,841 |
تعداد مشاهده مقاله | 11,183,761 |
تعداد دریافت فایل اصل مقاله | 7,507,459 |
FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 7، شماره 2، شهریور 2010، صفحه 41-54 اصل مقاله (191.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2010.171 | ||
نویسندگان | ||
Shokoofeh Ghorbani1؛ Abbas Hasankhani* 2 | ||
1Department of Mathematics of Bam, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده | ||
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy convex subalgebras of an integral commutative residuated lattice and will prove that fuzzy filters and fuzzy convex subalgebras of an integral commutative residuated lattice coincide. | ||
کلیدواژهها | ||
(Integral) Commutative residuated lattice؛ Fuzzy convex subalgebra؛ Fuzzy congruence relation؛ Fuzzy filter | ||
مراجع | ||
[1] T. S. Blyth and M. F. Janovitz,Residuation theory, Perogamon Press, 1972. [2] K. Blount and C. Tsinakies,The structure of residuated lattices, Internat. J. Algebra Comput., 13(4)(2003), 437-461. [3] P. S. Das,Fuzzy groups and level subgroups, Math. Anal. Appl., 84 (1981), 264-269. [4] R. P. Dilworth,Non-commutative residuated lattices, Trans. Amer. Math. Soc., (1939), 426-444. [5] J. Hart, L. Rafter and C. Tsinakis,The structure of commutative residuated lattices, Internat. J. Algebra Comput.,12(4) (2002), 509-524. [6] A. Hasankhani and A. Saadat,Some quotients on BCK-algebra generated by a fuzzy set, Iranian Journal of Fuzzy Systems,1(2) (2004), 33-43. [7] K. Hur, S. Y. Jang and H. W. Kang,Some intuitionistic fuzzy congruences, Iranian Journal of Fuzzy Systems,3(1) (2006), 45-57. [8] A. Iorgulescu,Classes of BCK algebras-part III, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint,3 (2004), 1-37. [9] T. Kowalski and H. Ono,Residuated lattices: an algebraic glimpse at logic without contraction, Japan Advanced Insitute of Science and Technology, 2001. [10] L. Lianzhen and L. Kaitai,Fuzzy filters of BL- algebras, Information Sciences, 173 (2005),141-154. [11] V. Murali,Fuzzy equivalence relations, Fuzzy Sets and Systems, 30 (1989), 155-163. [12] E. Turunen,Mathematics behind fuzzy logic, Physica-Verlag, 1999. [13] M. Ward,Residuated distributive lattices, Duke Math. J., (1940), 641-651. [14] M. Ward and R. P. Dilworth,Residuated lattices, Trans. Amer. Math. Soc., (1939), 335-354. [15] L. A. Zadeh,Fuzzy sets, Information and Control ,(1965), 338-353. [16] J. L. Zhang,Fuzzy filters of the residuated lattices, New Math. Nat. Comput., 2(1) (2006),11-28. | ||
آمار تعداد مشاهده مقاله: 2,349 تعداد دریافت فایل اصل مقاله: 1,419 |