تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,698 |
تعداد مشاهده مقاله | 7,966,970 |
تعداد دریافت فایل اصل مقاله | 5,349,906 |
$L$-enriched topological systems---a common framework of $L$-topology and $L$-frames | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 11، شماره 5، زمستان 2014، صفحه 93-103 اصل مقاله (370.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2014.1725 | ||
نویسنده | ||
M. Liu ![]() | ||
School of Sciences, Chang'an University, Xi'an, China | ||
چکیده | ||
Employing the notions of the strong $L$-topology introduced by Zhang and the $L$-frame introduced by Yao and the concept of $L$-enriched topological system defined in the present paper, we construct adjunctions among the categories {\bf St$L$-Top} of strong $L$-topological spaces, {\bf S$L$-Loc} of strict $L$-locales and {\bf $L$-EnTopSys} of $L$-enriched topological systems. All of these concepts are essentially based on the theory of $L$-enriched categories, thus we obtain a unified enriched-categorical version of the classical adjunctions among the categories {\bf Top} of topological spaces, {\bf Loc} of locales and {\bf TopSys} of topological systems, as well as a unified enriched-categorical approach to treating these concepts. | ||
کلیدواژهها | ||
Enriched category؛ Adjunction؛ $L$-ordered set؛ Strong $L$-topology؛ $L$-enriched topological system؛ $L$-frame | ||
مراجع | ||
bibitem{Adamek:ACC} J. Ad'{a}mek, H. Herrlich and G. E. Strecker, {it Abstract and Concrete Categories}, Wiley, New York, 1990. bibitem{Belohlavek:CLAO} R. Bv{e}lohl'{a}vek, {it Concept lattices and order in fuzzy logic}, Annals of Pure and Applied Logic, {bf 128(1-3)} (2004), 277-298. bibitem{Belohlavek:FRA} R. Bv{e}lohl'{a}vek, {it Fuzzy relational systems: foundations and principles}, Kluwer Academic/Plenum Publishers, New York, 2002. bibitem{Chang:FTS} C. L. Chang, {it Fuzzy topological spaces}, J. Math. Anal. Appl., {bf 24(1)} (1968), 182-190. bibitem{Denniston:ETS} J. T. Denniston, A. Melton and S. E. Rodabaugh, {it Enriched topological systems and variable-basis enriched functors}, In: U. H"{o}hle, L. N. Stout, E. P. Klement, Abstracts of the 33th Linz Seminar on Fuzzy Set Theory, Universit"{a}tsdirektion Johannes Kepler Universit"{a}t (Linz, Austria), 14-18 February (2012), 16-20. bibitem{Denniston:IAAT} J. T. Denniston, A. Melton and S. E. Rodabaugh, {it Interweaving algebra and topology: Lattice-valued topological systems}, Fuzzy Sets and Systems, {bf 192} (2012), 58-103. bibitem{Denniston:LTS} J. T. Denniston, A. Melton and S. E. Rodabaugh, {it Lattice-valued topological systems}, In: U. Bodenhofer, B. De Baets, E. P. Klement, Abstracts of the 30th Linz Seminar, Universit"{a}tsdirektion Johannes Kepler Universit"{a}t (Linz, Austria), 3-7 February (2009), 24-31. bibitem{Fan:ANAT}L. Fan, {it A new approach to quantitative domain theory}, Electronic Notes in Theoretical Computer Science, {bf 45} (2001), 77-87. bibitem{Goguen:LFS} J. A. Goguen, {it $L$-fuzzy sets}, Journal of Mathematical Analysis and Applications, {bf 18(1)} (1967), 145-174. bibitem{Goguen:TFTT} J. A. Goguen, {it The fuzzy tychonoff theorem}, J. Math. Anal. Appl., {bf 43(3)} (1973), 734-742. bibitem{Hofmann:AIQC} D. Hofmann and P. L. Waszkiewicz, {it Approximation in quantale-enriched categories}, Topology and its Applications, {bf 158(8)} (2011), 963-977. bibitem{Johnstone:SS} P. T. Johnstone, {it Stone spaces}, Cambridge University Press, Cambridge, 1982. bibitem{Kelly:BCOE} G. M. Kelly, {it Basic concepts of enriched category theory}, London Mathematical Society Lecture Notes Series 64, Cambridge University Press, 1982. bibitem{Lai:CADC} H. Lai and D. Zhang, {it Complete and directed complete $Omega$-categories}, Theoret. Comput. Sci., {bf 388(1-3)} (2007), 1-25. bibitem{Lai:MCD} H. Lai and D. Zhang, {it Many-valued complete distributivity}, arXiv:math/0603590v2 [math.CT], 12 May 2006. bibitem{Lawvere:MSGL} F. W. Lawvere, {it Metric spaces, generalized logic, and closed categories}, Rend. Sem. Mat. Fis. Milano, {bf 43(1)} (1973), 135-166. bibitem{Liu:OSRP} M. Liu, {it On some related problems in $Omega$-categories and fuzzy domains}, Ph.D. Thesis, Shannxi normal university, Xi'an, China, 2013. bibitem{Lowen:FTSA} R. Lowen, {it Fuzzy topological spaces and fuzzy compactness}, J. Math. Anal. Appl., {bf 56(3)} (1976), 623-633. bibitem{Rodabaugh:POFF} S. E. Rodabaugh, {it Powerset operator foundations for poslat fuzzy set theories and topologies}, in: U. H"{o}hle, S. E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, (1999), 91-116. bibitem{Rosenthal:QATA} K. I. Rosenthal, {it Quantales and Their Applications}, Pitman Research Notes in Mathematics Series, Longman, {bf 234} (1990). bibitem{Stubbe:CSCD} I. Stubbe, {it Categorical structures enriched in a quantaloid: Categories, distributors and functors}, Theory Appl. Categ., {bf 14(1)} (2005), 1-45. bibitem{Stubbe:CSTA} I. Stubbe, {it Categorical structures enriched in a quantaloid: Tensored and cotensored categories}, Theory Appl. Categ., {bf 16(14)} (2006), 283-306. bibitem{Vickers:TVL} S. J. Vickers, {it Topology via logic}, Cambridge University Press, Cambridge, 1989. bibitem{Wagner:SRDE} K. R. Wagner, {it Solving recursive domain equations with enriched categories}, Ph.D. Thesis, Carnegie Mellon University, Tech. Report CMU-CS-94-159, July, 1994. bibitem{Yao:AATF} W. Yao, {it An approach to fuzzy frames via fuzzy posets}, Fuzzy Sets and Systems, {bf 166(1)} (2011), 75-89. bibitem{Yao:QDVF} W. Yao, {it Quantitative domains via fuzzy sets: Part I: continuity of fuzzy directed-complete poset}, Fuzzy Sets and Systems, {bf 161(7)} (2010), 983-987. bibitem{Zhang:AECA} D. Zhang, {it An enriched category approach to many valued topology}, Fuzzy Sets and Systems, {bf 158(4)} (2007), 349-366. bibitem{Zhang:FCL} Q. Y. Zhang, W. X. Xie and L. Fan, {it Fuzzy complete lattices}, Fuzzy Sets and Systems, {bf 160(16)} (2009), 2275-2291. | ||
آمار تعداد مشاهده مقاله: 1,966 تعداد دریافت فایل اصل مقاله: 1,048 |