تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,730,976 |
تعداد دریافت فایل اصل مقاله | 6,362,566 |
Aluminum Oxide Nanofluid Energy Transfer | ||
Challenges in Nano and Micro Scale Science and Technology | ||
مقاله 6، دوره 3، شماره 1، فروردین 2015، صفحه 54-61 اصل مقاله (462.21 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.7508/tpnms.2015.01.006 | ||
نویسندگان | ||
R. Aghayari* 1؛ H. Maddah2؛ Z. Sharifnezhad2؛ A. Hakiminejad3؛ S. Sarli2 | ||
1Chemical Engineering Department, University of Islamic Azad, Shahrood, I.R. Iran | ||
2Chemistry Department, Sciences Faculty, University of Islamic Azad, Arak, I.R.Iran | ||
3Alborz Institution of Higher Education, Qazvin , I.R. Iran | ||
چکیده | ||
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids.This article aims to investigate the overall and convection heat transfer coefficient and Nusselt number of Al2O3-water nanofluid flowing in a horizontal double pipe heat exchanger under turbulent flow () conditions. Al2O3 nanoparticles with diameter of 20 nm dispersed in Deionized water with volume concentrations of vol. are used as the test fluid. The results show that the overall and convection heat transfer coefficient and Nusselt number of nanofluid were approximately 15% -21% greater than that of pure fluid. Additionally, the heat transfer coefficient and Nusselt number increase with an increase in flow rate,Reynolds number, nanoparticle concentration and nanofluid temperature. Finally, the new correlations were proposed for predicting the Nusselt number of the nanofluids, especially. Employing particles of nanometer dimension suspended in solution as nanofluid shows considerable increase in the nanofluid thermal conductivity and heat transfer coefficient which result in increasing heat transfer and decreasing operational cost. | ||
کلیدواژهها | ||
Heat Exchanger؛ Heat transfer coefficient؛ Nanofluid؛ Nusselt number | ||
مراجع | ||
[1] Aghayari et al , Effect of Nanoparticles on Heat Transfer in Mini Double Pipe Heat Exchangers in Turbulent Flow, Heat and mass transfer 2014 (2014).
[2] Y. He, Y . Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transferand flow behavior of aqueous suspensions of TiO2 nanoparticles(nanofluids) flowing upward through a pipe Int. J .Heat MaSS Transfer 50 (2007) 2272.
[3] C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis,Heat transfer enhancementusing AL2O3-water nanofluid forelectronic liquidcooling system,Appl. Therm. Eng 28(2007)1501.
[4] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer 47 (2004) 5181.
[5] Byung-Hee Chun et al, Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system Korean Journal of Chemical Engineering 25(2008) 966-971
[6] W. Duangthongsuk , An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer 53 (2010) 334–344.
[7] C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letters 87 (15) (2005) 153107–153110.
[8] Byung-Hee Chun et al, Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system Korean Journal of Chemical Engineering 25 (2008) 966-971.
[9] M Raja et al, Effect of heat transfer enhancement and NOx emission using Al2O3/water nanofluid as coolant in CI engine , Indian Journal of Engineering & Materials Sciences 20 ( 2013) 443-449.
[10] M. Pirhayati et al, Convective Heat Transfer of Oil based Nanofluid Flow inside a Circular Tub, IJE TRANSACTIONS B: Applications 27 (2014) 341-348.
[11] S. Sudarmadji et al, Effects of Cooling Process of Al2O3-water Nanofluid on Convective Heat Transfer, FME Transactions 42 (2014) 155-161.
[12] E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Physical Review 76 (2007) 061203.
[13] F.J. Wasp, Solid–Liquid Slurry Pipeline Transportation, Trans Tech (1977).
[14] Choi, US: Enhancing thermal conductivity of fluid with nanoparticles. ASME FED 66 (1995) 99–105.
[15] H.C. Brinkman, The viscosity of concentrated suspensions and solution, Journal of Chemical Physics 20 (1952) 571–581.
[16] L. Syam Sundar et al,laminar Convective Heat Transfer and fraction factor of AL2O3 nanofluid in circular tube fited with twisted tape inserts, International Journal of Automotive and Mechanical Engineering 3 (2011) 2 65-278. | ||
آمار تعداد مشاهده مقاله: 2,227 تعداد دریافت فایل اصل مقاله: 1,937 |