تعداد نشریات | 27 |
تعداد شمارهها | 586 |
تعداد مقالات | 6,016 |
تعداد مشاهده مقاله | 8,765,640 |
تعداد دریافت فایل اصل مقاله | 5,773,338 |
EMBEDDING OF THE LATTICE OF IDEALS OF A RING INTO ITS LATTICE OF FUZZY IDEALS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 6، شماره 3، دی 2009، صفحه 65-71 اصل مقاله (161.75 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2009.201 | ||
نویسنده | ||
Iffat Jahan ![]() | ||
Department of Mathematics, Ramjas College, University Of Delhi, Delhi, India | ||
چکیده | ||
We show that the lattice of all ideals of a ring $R$ can be embedded in the lattice of all its fuzzy ideals in uncountably many ways. For this purpose, we introduce the concept of the generalized characteristic function $\chi _{s}^{r} (A)$ of a subset $A$ of a ring $R$ for fixed $r , s\in [0,1] $ and show that $A$ is an ideal of $R$ if, and only if, its generalized characteristic function $\chi _{s}^{r} (A)$ is a fuzzy ideal of $R$. We also show that the set of all generalized characteristic functions $C_{s}^{r} (I(R))$ of the members of $I(R)$ for fixed $r , s\in [0,1] $ is a complete sublattice of the lattice of all fuzzy ideals of $R$ and establish that this latter lattice is generated by the union of all its complete sublattices $C_{s}^{r} (I(R))$. | ||
کلیدواژهها | ||
Algebra؛ Ideal of a ring؛ Morphism؛ Embedding؛ Lattice | ||
مراجع | ||
[1] N. Ajmal and K. V. K. Thomas, The lattice of fuzzy subgroups and fuzzy normal subgroups, Information Sci., 76 (1994), 1-11. [2] T. Head, A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Sets and Systems, 73 (1995), 349-358. [3] L. Wangjin, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139. [4] D. S. Malik and J. N. Mordeson, Radicals of fuzzy ideals, Information Sci., 65 (1992) 23, 239-252. [5] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. [6] A. Weinberger, Embedding lattices of fuzzy subalgebras into lattices of crisp sub-algebras, Information Sci., 108 (1998), 51-70. | ||
آمار تعداد مشاهده مقاله: 2,143 تعداد دریافت فایل اصل مقاله: 1,451 |