تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,158 |
تعداد مشاهده مقاله | 9,077,073 |
تعداد دریافت فایل اصل مقاله | 5,928,352 |
Boundedness of linear order-homomorphisms in $L$-topological vector spaces | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 12، شماره 3، شهریور 2015، صفحه 127-135 اصل مقاله (304.44 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2015.2023 | ||
نویسندگان | ||
Hua-Peng Zhang ![]() | ||
1School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China | ||
2School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China | ||
چکیده | ||
A new definition of boundedness of linear order-homomorphisms (LOH) in $L$-topological vector spaces is proposed. The new definition is compared with the previous one given by Fang [The continuity of fuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997) 829$-$838]. In addition, the relationship between boundedness and continuity of LOHs is discussed. Finally, a new uniform boundedness principle in $L$-topological vector spaces is established in the sense of a new definition of uniform boundedness for a family of LOHs. | ||
کلیدواژهها | ||
$L$-topological vector space؛ Linear order-homomorphism؛ Bounde-\dness | ||
مراجع | ||
[1] D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, Academic Press, New York, 1980. [2] M. A. Erceg, Functions, equivalence relations, quotient spaces and subsets in fuzzy set theory, Fuzzy Sets and Systems, 3 (1980), 75{92. [3] J. X. Fang, Fuzzy linear order-homomorphism and its structures, J. Fuzzy Math., 4(1) (1996), 93{102. [4] J. X. Fang, The continuity of fuzzy linear order-homomorphism, J. Fuzzy Math., 5(4) (1997), 829{838. [5] J. X. Fang and C. H. Yan, L-fuzzy topological vector spaces, J. Fuzzy Math., 5(1) (1997), 133{144. [6] J. X. Fang and H. Zhang, Boundedness and continuity of fuzzy linear order-homomorphisms on I-topological vector spaces, Iranian Journal of Fuzzy Systems, 11(1) (2014), 147{157. [7] M. He, Bi-induced mappings on L-fuzzy sets, Kexue Tongbao, (in Chinese), 31 (1986), 475. [8] U. Hohle and S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure theory, the handbooks of fuzzy sets series, vol. 3, Kluwer Academic Publishers, Dordrecht, 1999. [9] A. K. Katsaras, Fuzzy topological vector spaces I, Fuzzy Sets and Systems, 6 (1981), 85{95. [10] Y. M. Liu, Structures of fuzzy order homomorphisms, Fuzzy Sets and Systems, 21 (1987), 43{51. [11] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientic Publishing, Singapore, 1997. [12] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems, 40 (1991), 297{345. [13] S. E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic (POSLAT) fuzzy set theories and topologies, Quaestiones Math., 20 (1997), 463{530. [14] G. J. Wang, Order-homomorphisms on fuzzes, Fuzzy Sets and Systems, 12 (1984), 281{288. [15] G. J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Press, Xi'an, (in Chinese), 1988 . [16] C. H. Yan, Initial L-fuzzy topologies determined by the family of L-fuzzy linear order- homomorphisms, Fuzzy Sets and Systems, 116 (2000), 409{413. [17] C. H. Yan, Generalization of inductive topologies to L-topological vector spaces, Fuzzy Sets and Systems, 131 (2002), 347{352. [18] C. H. Yan and J. X. Fang, The uniform boundedness principle in L-topological vector spaces, Fuzzy Sets and Systems, 136 (2003), 121{126. | ||
آمار تعداد مشاهده مقاله: 1,512 تعداد دریافت فایل اصل مقاله: 855 |