تعداد نشریات | 26 |
تعداد شمارهها | 551 |
تعداد مقالات | 5,712 |
تعداد مشاهده مقاله | 7,971,371 |
تعداد دریافت فایل اصل مقاله | 5,353,152 |
Coincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 12، شماره 6، زمستان 2015، صفحه 141-154 اصل مقاله (361.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2015.2185 | ||
نویسندگان | ||
Z. Sadeghi* 1؛ S. M. Vaezpour2 | ||
1Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran. | ||
2Department of Mathematics and Computer Sciences, Amirkabir Uni- versity of Technology, Tehran, Iran | ||
چکیده | ||
The purpose of this paper is to present some coincidence point and common fixed point theorems for multivalued contraction maps in complete fuzzy metric spaces endowed with a partial order. As an application, we give an existence theorem of solution for general classes of integral inclusions by the coincidence point theorem. | ||
کلیدواژهها | ||
Coincidence point؛ Fixed point؛ Multivalued mapping؛ Ordered fuzzy metric space؛ Volterra integral inclusion | ||
مراجع | ||
[1] A. Beitollahi, P. Azhdari, Multivalued ( ; ; ; )-contractin in probabilistic metric space, Fixed Point Theory and Applications, (2012), 2012:10. [2] S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang and J. S. Jung, Generalized contraction mapping principle and diferential equations in probabilistic metric spaces, Pro- ceedings of the American Mathematical Society, 124(8) (1996), 2367{2376. [3] L. Ciric, Some new results for Banach contractions and Edelestein contractive mappings on fuzzy metric spaces, Chaos, Solutons and Fractals, 42 (2009), 146{154. [4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and systems, 64 (1994), 395{399. [5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27 (1988), 385{389. [6] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245{252. [7] O. Hadzic and E. Pap, A xed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces, Fuzzy Sets and Systems, 127 (2002), 333{ 344. [8] O. Hadzic, E. Pap and M. Budincevic, Countable extension of triangular norms and their ap- plications to the xed point theory in probabilistic metric spaces, Kybernetika, 38(3) (2002), 363-381. [9] O. Hadzic and E. Pap, Fixed point theorems for single-valued and multivalued mappings in probabilistic metric spaces, Atti Sem. Mat. Fiz. Modena LI, (2003), 377-395. [10] O. Hadzic and E. Pap, Fixed point theory in probabilistic metric space, Kluwer Academic Publishers, Dordrecht, 2001. [11] O. Hadzic and E. Pap, New classes of probabilistic contractions and applications to random operators, in: Y.J. Cho, J.K. Kim, S.M. Kong (Eds.), Fixed Point Theory and Application, Vol. 4, Nova Science Publishers, Hauppauge, New York, (2003), 97-119. [12] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229. [13] Y. Liu and Zh. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy Sets and Systems, 158 (2007), 58-70. [14] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144 (2004), 431-439. [15] D. Mihet, A class of contractions in fuzzy metric spaces, Fuzzy Sets and Systems, 161 (2010), 1131-1137. [16] D. Mihet, Multivalued generalizations of probabilistic contractions, J. Mathematic Analysis Application, 304 (2005), 464{472. [17] J. Rodrguez-Lpez and S. Romaguera, The Hausdor fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004), 273{283. [18] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Application Math- ematic and Computing, 17(1-2) (2005), 475-484. [19] B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313{334. [20] S. L. Singh and S. N. Mishra, Coincidence and xed points of nonself hybrid contractions, J. Math. Anal. Appl., 256 (2001), 486{497. [21] P. Tirado, Contraction mappings in fuzzy quasi-metric spaces and [0; 1]-fuzzy posets, Fixed Point Theory, 13(1) (2012), 273{283. [22] T. Zikic-Dosenovic, A multivalued generalization of Hick's C-contraction, Fuzzy Sets and Systems, 151(3) (2005), 549-562. [23] T. Zikic-Dosenovic, Fixed point theorems for contractive mappings in Menger probabilistic metric spaces, Proceeding of IPMU'08, June 22{27, (2008), 1497{1504. | ||
آمار تعداد مشاهده مقاله: 1,490 تعداد دریافت فایل اصل مقاله: 1,184 |