تعداد نشریات | 27 |
تعداد شمارهها | 612 |
تعداد مقالات | 6,232 |
تعداد مشاهده مقاله | 9,356,332 |
تعداد دریافت فایل اصل مقاله | 6,107,449 |
ON ($\epsilon, \epsilon \vee q$)-FUZZY IDEALS OF BCI-ALGEBRAS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 6، شماره 1، اردیبهشت 2009، صفحه 81-94 اصل مقاله (198.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2009.222 | ||
نویسندگان | ||
Jianming Zhan* 1؛ Young Bae Jun2؛ Bijan Davvaz3 | ||
1Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province,445000, P. R. China | ||
2Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea | ||
3Department of Mathematics, Yazd University, Yazd, Iran | ||
چکیده | ||
The aim of this paper is to introduce the notions of ($\epsilon, \epsilon \vee q$)- fuzzy p-ideals, ($\epsilon, \epsilon \vee q$)-fuzzy q-ideals and ($\epsilon, \epsilon \vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterization theorems for these generalized fuzzy ideals are proved and the relationship among these generalized fuzzy ideals of BCI-algebras is discussed. It is shown that a fuzzy set of a BCI-algebra is an ($\epsilon, \epsilon \vee q$)-fuzzy a-ideal if and only if it is both an ($\epsilon, \epsilon \vee q$)-fuzzy p-ideal and an ($\epsilon, \epsilon \vee q$)-fuzzy q-ideal. Finally, the concept of implication-based fuzzy a-ideals in BCI-algebras is introduced and, in particular, the implication operators in Lukasiewicz system of continuousvalued logic are discussed. | ||
کلیدواژهها | ||
BCI-algebra؛ ($\epsilon؛ \epsilon \vee q$)-fuzzy (p-؛ q- and a-) ideal؛ Fuzzy logic؛ Implication operator | ||
مراجع | ||
[1] S. K. Bhakat, (2, 2_ q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems, 112 (2000), 299-312. [2] S. K. Bhakat and P. Das, (2, 2 _ q)-fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996), 359-368. [3] C. C. Chang, Algebraic analysis of many valued logic, Trans. Amer. Math. Soc., 88 (1958), 467-490. [4] B. Davvaz, (2, 2 _q)-fuzzy subnear-rings and ideals, Soft Computing, 10 (2006), 206-211. [5] B. Davvaz and P. Corsini, Redefined fuzzy Hv-submodules and many valued implications, Inform. Sci., 177 (2007), 865-875. [6] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124 (2001), 271-288. [7] P. H´ajek, Metamathematics of fuzzy logic, Kluwer Academic Press, Dordrecht, 1998. [8] Y. Imai and K. Iseki, On axiom system of propositional calculus, Proc. Japan Acad., 42 (1966), 19-22. [9] A. Iorgulescu, Some direct ascendents of wajsberg and MV algebras, Sci. Math. Japon., 57 (2003), 583-647. [10] A. Iorgulescu, Pseudo-Iseki algebras. connection with pseudo-BL algebras, Multiple-Valued Logic and Soft Computing, 11 (2005), 263-308. [11] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29. [12] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon., 21 (1966), 351-366. [13] Y. B. Jun, Closed fuzzy ideals in BCI-algebras, Math. Japon., 38 (1993), 199-202. [14] Y. B. Jun, On (, )-fuzzy ideals of BCK/BCI-algebras, Sci. Math. Japon., 60 (2004), 613- 617. [15] Y. B. Jun, On (, )-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc., 42 (2005), 703-711. [16] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon, 40 (1994), 271-282. [17] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Comm. Korean Math. Soc., 9 (1994), 19-25. [18] Y. B. Jun and W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras, Inform. Sci., 170 (2005), 351-361. [19] Y. B. Jun, Y. Xu and J. Ma, Redefined fuzzy implicative filters, Inform. Sci., 177 (2007), 1422-1429. [20] T. D. Lei and C. C. Xi, p-radical in BCI-algebras, Math. Japon., 30 (1995), 511-517. [21] Y. L. Liu, Some results on p-semisimple BCI-algebras, Math. Japon, 30 (1985), 511-517. [22] Y. L. Liu, S. Y. Liu and J. Meng, FSI-ideals and FSC-ideals of BCI-algebras, Bull. Korean Math. Soc., 41 (2004), 167-179. [23] Y. L. Liu and J. Meng, Fuzzy q-ideals of BCI-algebras, J. Fuzzy Math., 8 (2000), 873-881. [24] Y. L. Liu and J. Meng, Fuzzy ideals in BCI-algebras, Fuzzy Sets and Systems, 123 (2001), 227-237. [25] Y. L. Liu, J. Meng, X. H. Zhang and Z. C. Yue, q-ideals and a-ideals in BCI-algebras, SEA Bull. Math., 24 (2000), 243-253. [26] Y. L. Liu, Y. Xu and J. Meng, BCI-implicative ideals of BCI-algebras, Inform. Sci., 177 (2007), 4987-4996. [27] Y. L. Liu and X. H. Zhang, Fuzzy a-ideals in BCI-algebras, Adv. in Math.(China), 31 (2002), 65-73. [28] J. Meng and X. Guo, On fuzzy ideals in BCK-algebras, Fuzzy Sets and Systems, 149 (2005), 509-525. [29] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, Korean, 1994. [30] D. Mundici, MV algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon., 31 (1986), 889-894. [31] P. M. Pu and Y. M. Liu, Fuzzy topology I: Neighourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599. [32] X. H. Yuan, C. Zhang and Y. H. Ren, Generalized fuzzy groups and many valued applications, Fuzzy Sets and Systems, 138 (2003), 205-211. [33] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. [34] L. A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outine, Inform. Sci., 172 (2005), 1-40. [35] J. Zhan and Y. L. Liu, On f-derivation of BCI-algebras, Int. J. Math. Math. Sci., 2005, 1675-1684. [36] J. Zhan and Z. Tan, Fuzzy a-ideals of IS-algebras, Sci. Math. Japon, 58 (2003), 85-87. [37] J. Zhan and Z. Tan, Intuitionistic fuzzy a-ideals in BCI-algebras, Soochow Math. J., 30 (2004), 207-216. [38] X. H. Zhang, H. Jiang and S. A. Bhatti, On p-ideals of BCI-algebras, Punjab Univ. J. Math., 27 (1994), 121-128. | ||
آمار تعداد مشاهده مقاله: 2,615 تعداد دریافت فایل اصل مقاله: 2,186 |