تعداد نشریات | 29 |
تعداد شمارهها | 629 |
تعداد مقالات | 6,360 |
تعداد مشاهده مقاله | 9,728,812 |
تعداد دریافت فایل اصل مقاله | 6,360,738 |
FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 3، دوره 9، شماره 1، اردیبهشت 2012، صفحه 21-37 اصل مقاله (178.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2012.223 | ||
نویسنده | ||
Seyed Hamid Zahiri* | ||
Department of Electrical Engineering, Faculty of Engineering, Birjand University, Birjand, Iran | ||
چکیده | ||
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major roles on search process of GSA. Then the improved GSA (namely Fuzzy-GSA) is employed to construct a novel data mining algorithm for classification rule discovery from reference data sets. Extensive experimental results on different benchmarks and a practical pattern recognition problem with nonlinear, overlapping class boundaries and different feature space dimensions are provided to show the powerfulness of the proposed method. The comparative results illustrate that performance of the proposed FGSA-miner considerably outperforms the standard GSA. Also it is shown that the performance of the FGSA-miner is comparable to, sometimes better than those of the CN2 (a traditional data mining method) and similar approach which have been designed based on other swarm intelligence algorithms (ant colony optimization and particle swarm optimization) and evolutionary algorithm (genetic algorithm). | ||
کلیدواژهها | ||
Gravitational search algorithm؛ Fuzzy controller؛ Data Mining؛ Rule based classifier | ||
مراجع | ||
[1] P. Clark and T. Niblet, The CN2 induction algorithm, Mach. Learn., 3(4) (1989), 261-283. [2] A. E. Eiben, R. Hinterding and Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation, 3(2) (1999), 124-141. [3] A. Freitas, A survey of evolutionary algorithms for data mining and knowledge discovery, In: A. Ghosh, S. Tsutsui, eds., Advances in Evolutionary Computation, Springer-Verlag, 2001. [4] R. Kohavi and M. Sahami, Error-based and entropy-based discretization of continuous features, Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining, Menlo Park, CA, (1996), 114-119. [5] B. Liu, H. A. Abbass and B. Mckay Classification rule discovery with ant colony optimization, In Proceeding of the IEEE/WIC International Conference on Intelligent Agent Technology, Beijing, China, (2003), 83-88. [6] P. M. Mary and S. Marimuthu, Minimum time swing up and stabilization ofrotary inverted pendulum using pulse step control, Iranian Journal of Fuzzy Systems, 6(3) (2009), 1-15. [7] E. Mehdizadeh, S. Sadi-nezhad and R. Tavakkoli-moghaddam, Optimization of fuzzy clustering criteria by a hybrid PSO and fuzzy c-mean clustering algorithm, Iranian Journal of Fuzzy Systems, 5(1) (2008), 1-14. [8] F. Moayedi, R. Boostani, A. R. Kazemi, S. Katebi and E. Dashti, Subclass fuzzy-svm classifier an efficient method to enhance the mass detection in mammograms, Iranian Journal of Fuzzy Systems, 7(1) (2010), 15-31. [9] R. S. Parpinelli, H. S. Lopes and A. A. Freitas, Data mining with an ant colony optimization algorithm, IEEE Transactions on evolutionary computing, 6(4) (2002), 321-332. [10] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences, 179(13) (2009), 2232-2248. [11] R. Sarkar, H. abbas and C. Newton, Introducing data mining and knowledge discovery, Heuristic and Optimization for Knowledge Discovery, Idea Group Publishing, (2008), 1-23. [12] Y. Shi, R. Eberhart and Y. Chen, Implementation of evolutionary fuzzy systems, IEEE Transactions On Fuzzy Systems, 7(2) (1999), 109-119. [13] T. Sousa, A Silva and A. Neves, Particle swarm based data mining algorithms for classification tasks, Parallel Computing, 30(1) (2004), 767-783. [14] M. Stenes and H. Robous, GA-fuzzy modeling and classification: complexity and performance, IEEE Transactions on Fuzzy Systems, 8(5) (2000), 509-522. [15] S. H. Zahiri, H. Zareie and M. R. Agha-ebrahimi, Automatic target recognition using jet engine modulation on backscattered signals, In the Communication Proc. of 8’th Iranian Conf. on Electrical Engineering, Isfahan, (1996), 296-303. [16] S. H. Zahiri and S. A. Seyedin, Swarm intelligence based classifiers, Int. J. of the Franklin Inst., 344(2) (2007), 362-376. [17] S. H. Zahiri, H. Rajabi Mashhadi and S. A. Seyedin, Intelligent and robust genetic algorithm based classifier, Iranian Journal of Electrical and Electronic Engineering, 1(3) (2005), 1-9. | ||
آمار تعداد مشاهده مقاله: 2,449 تعداد دریافت فایل اصل مقاله: 3,089 |