تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,825 |
تعداد مشاهده مقاله | 8,164,630 |
تعداد دریافت فایل اصل مقاله | 5,462,399 |
ON SOLUTION OF A CLASS OF FUZZY BVPs | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 5، دوره 9، شماره 1، اردیبهشت 2012، صفحه 49-60 اصل مقاله (375.48 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2012.225 | ||
نویسندگان | ||
Omid Solaymani Fard ![]() | ||
1School of Mathematics and Computer Science, Damghan Uni- versity, Damghan, Iran | ||
2School of Mathematics and Computer Science, Damghan University, Damghan, Iran | ||
3Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده | ||
This paper investigates the existence and uniqueness of solutions to rst-order nonlinear boundary value problems (BVPs) involving fuzzy dif- ferential equations and two-point boundary conditions. Some sucient condi- tions are presented that guarantee the existence and uniqueness of solutions under the approach of Hukuhara di erentiability. | ||
کلیدواژهها | ||
Fuzzy numbers؛ Fuzzy dierential equations؛ Boundary value problems | ||
مراجع | ||
[1] M. F. Abbod, D. G. Von Keyserlingk, D. A. Linkens and M. Mahfouf, Survey of utilisation of fuzzy technology in medicine and healthcare, Fuzzy Sets and Systems, 120 (2001), 331-349. [2] T. Allahviranloo and M. A. Kermani, Numerical methods for fuzzy linear partial dierential equations under new denition for derivative, Iranian Journal of Fuzzy Systems, 7(3) (2010), 33-50. [3] S. Bandyopadhyay, An ecient technique for superfamily classication of amino acid se- quences: feature extraction, fuzzy clustering and prototype selection, Fuzzy Sets and Systems, 152 (2005), 5-16. [4] S. Barro and R. Marn, Fuzzy logic in medicine, Heidelberg: Physica-Verlag, 2002. [5] B. Bede, Note on "Numerical solutions of fuzzy dierential equations by predictor-corrector method", Information Sciences, 178 (2008), 1917-1922. [6] B. Bede and S. G. Gal, Generalizations of the dierentiability of fuzzy number valued func- tions with applications to fuzzy dierential equation, Fuzzy Sets and Systems, 151 (2005), 581-599. [7] J. J. Buckley and T. Feuring, Fuzzy dierential equations, Fuzzy Sets and Systems, 110 (2000), 43-54. [8] J. Casasnovas and F. Rossell, Averaging fuzzy biopolymers, Fuzzy Sets and Systems, 152 (2005), 139-58. [9] Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy dierential equations, Chaos, Solitions and Fractals, 38 (2008), 112-119. [10] B. C. Chang and S. K. Halgamuge, Protein motif extraction with neuro-fuzzy optimization, Bioinformatics, 18 (2002), 1084-1090. [11] P. Diamond, Time-dependent dierential inclusions, cocycle attractors and fuzzy dierential equations, IEEE Trans Fuzzy Syst., 7 (1999), 734-740. [12] D. Dubois and H. Prade, Towards fuzzy dierential calculus: Part 3, dierentiation, Fuzzy Sets and Systems, 8 (1982), 225-233. [13] D. Dubois and H. Prade, Fuzzy numbers: an overview, In: J. Bezdek, ed., Analysis of Fuzzy Information, CRC Press, 1987. [14] O. S. Fard and A. V. Kamyad, Modied kstep method for solving fuzzy initial value prob- lems, Iranian Journal of Fuzzy Systems, 8(1) (2011), 49-63. [15] T. Gnana Bhaskar, V. Lakshmikantham and V. Devi, Revisiting fuzzy dierential equations, Nonlinear Anal., 58 (2004), 351-358. [16] R. Goetschel and W. Voxman, Topological properties of fuzzy number, Fuzzy Sets and Sys- tems, 10 (1983), 87-99. [17] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. [18] A. Granas and J. Dugundji, Fixed ooint theory, Springer Monographs in Mathematics. Springer-Verlag, New York, 2003. [19] M. Guo, X. Xue and R. Li, The oscillation of delay dierential inclusions and fuzzy biody- namics models, Math. Comput. Model., 37 (2003), 651-658. [20] M. Guo and R. Li, Impulsive functional dierential inclusions and fuzzy population models, Fuzzy Sets and Systems, 138 (2003), 601-615. [21] C. M. Helgason and T. H. Jobe, The fuzzy cube and causal ecacy: representation of con- comitant mechanisms in stroke, Neural Networks, 11 (1998), 549-555. [22] O. Kaleva, Fuzzy dierential equations, Fuzzy Sets and Systems, 24 (1987), 301-317. [23] O. Kaleva, The Cauchy problem for fuzzy dierential equations, Fuzzy Sets and Systems, 35 (1990), 389-396. [24] O. Kaleva, A note on fuzzy dierential equations, Nonlinear Analysis, 64 (2006), 895-900. [25] M. Ma, M. Friedman and A. Kandel, A new approach for defuzzication, Fuzzy Sets and Systems, 111 (2000), 351-356. [26] M. S. El Naschie, A review of E-innite theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals, 19 (2004), 209-236. [27] M. S. El Naschie, The concepts of E-innite: an elementary introduction to the Cantorian- fractal theory of quantum physics, Chaos, Solitons and Fractals, 22 (2004), 495-511. [28] M. S. El Naschie, On a fuzzy Khler manifold which is consistent with the two slit experiment, Int. J. Nonlinear Sci. Numer. Simult., 6 (2005), 95-98. [29] J. J. Nieto and R. Rodrguez-Lopez, Bounded solutions for fuzzy dierential and integral equations, Chaos, Solitons and Fractals, 27 (2006), 1376-1386. [30] J. J. Nieto and R. Rodrguez-Lopez, Existence and uniqueness results for fuzzy dierential equations subject to boundary value conditions, AIP Conf. Proc., 1124 (2009), 264-273. [31] J. J. Nieto and A. Torres, Midpoints for fuzzy sets and their application in medicine, Artif. Intell. Med., 27 (2003), 81-101. [32] M. Oberguggenberger and S. Pittschmann, Dierential equations with fuzzy parameters, Math. Mod. Syst., 5 (1999), 181-202. [33] D. ORegan, V. Lakshmikantham and J. Nieto, Initial and boundary value problems for fuzzy dierential equations, Nonlinear Anal., 54 (2003), 405-415. [34] S. C. Palligkinis, G. Stefanidou and P. Efraimidi, RungeKutta methods for fuzzy dierential equations, Applied Mathematics and Computation, 209 (2009), 97-105. [35] M. L. Puri and D. A. Ralescu, Dierentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 91 (1983), 552-558. [36] R. Rodrguez-Lopez, Periodic boundary value problems for impulsive fuzzy dierential equa- tions, Fuzzy Sets and Systems, 159(11) (2008), 1384-1409. [37] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330. [38] Y. Tanaka, Y. Mizuno and T. Kado, Chaotic dynamics in the Friedman equation, Chaos, Solitons and Fractals, 24 (2005), 407-422. [39] D. Vorobiev and S. Seikkala, Toward the theory of fuzzy dierential equations, Fuzzy Sets and Systems, 125 (2002), 231-237. | ||
آمار تعداد مشاهده مقاله: 2,672 تعداد دریافت فایل اصل مقاله: 1,782 |