تعداد نشریات | 27 |
تعداد شمارهها | 558 |
تعداد مقالات | 5,772 |
تعداد مشاهده مقاله | 8,030,639 |
تعداد دریافت فایل اصل مقاله | 5,397,722 |
On The Relationships Between Types of $L$-convergence Spaces | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 13، شماره 1، اردیبهشت 2016، صفحه 93-103 اصل مقاله (324.7 K) | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2290 | ||
نویسندگان | ||
Qiu Jin![]() ![]() | ||
Department of Mathematics, Liaocheng University, Liaocheng, P.R.China | ||
چکیده | ||
This paper focuses on the relationships between stratified $L$-conver-gence spaces, stratified strong $L$-convergence spaces and stratified levelwise $L$-convergence spaces. It has been known that: (1) a stratified $L$-convergence space is precisely a left-continuous stratified levelwise $L$-convergence space; and (2) a stratified strong $L$-convergence space is naturally a stratified $L$-convergence space, but the converse is not true generally. In this paper, a strong left-continuity condition for stratified levelwise $L$-convergence space is given. It is proved that a stratified strong $L$-convergence space is precisely a strongly left-continuous stratified levelwise $L$-convergence space. Then a sufficient and necessary condition for a stratified $L$-convergence space to be a stratified strong $L$-convergence space is presented. | ||
کلیدواژهها | ||
$L$-topology؛ Stratified $L$-filter؛ Stratified $L$-convergence space | ||
مراجع | ||
[1] R. Belohlavek, Fuzzy relational systems: Foundations and Principles, New York: Kluwer Academic Publishers, (2002), 75-212. [2] J. M. Fang, Stratied L-ordered convergence structures, Fuzzy Sets and Systems, 161 (2010), 2130{2149. [3] J. M. Fang, Relationships between L-ordered convergence structures and strong L-topologies, Fuzzy Sets and Systems, 161 (2010), 2923{2944. [4] J. M. Fang, Lattice-valued semiuniform convergence spaces, Fuzzy Sets and Systems, 195 (2012), 33{57. [5] J. M. Fang, Stratied L-ordered quasiuniform limit spaces, Fuzzy Sets and Systems, 227 (2013), 51{73. [6] P. V. Flores, R. N. Mohapatra and G. Richardson, Lattice-valued spaces: Fuzzy convergence, Fuzzy Sets and Systems, 157 (2006), 2706{2714. [7] U. Hohle, Commutative, residuated l-monoids, In: U. Hohle, E.P. Klement (Eds.), Nonclassical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Dordrecht: Kluwer Academic Publishers, (1995), 53{105. [8] U. Hohle and A. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: U. Hohle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol.3, Boston, Dordrecht, London: Kluwer Academic Publishers, (1999), 123{273. [9] G. Jager, A category of L-fuzzy convergence spaces, Quaestiones Mathematicae, 24 (2001), 501{517. [10] G. Jager, Subcategories of lattice-valued convergence spaces, Fuzzy Sets and Systems, 156 (2005), 1{24. [11] G. Jager, Fischer's diagonal condition for lattice-valued convergence spaces, Quaestiones Mathematicae, 31 (2008), 11{25. [12] G. Jager, Gahler's neighbourhood condition for lattice-valued convergence spaces, Fuzzy Sets and Systems, 204 (2012), 27{39. [13] G. Jager, Diagonal conditions for lattice-valued uniform convergence spaces, Fuzzy Sets and Systems, 210 (2013), 39{53. [14] G. Jager, Stratied LMN-convergence tower spaces, Fuzzy Sets and Systems, 282 (2016), 62-73. [15] L. Li and Q. Li, A new regularity (p-regularity) of stratied L-generalized convergence spaces, Journal of Computational Analysis and Applications, 20(2) (2016), 307-318. [16] L. Li and Q. Jin, On adjunctions between Lim, SL-Top, and SL-Lim, Fuzzy Sets and Systems, 182 (2011), 66{78. [17] L. Li and Q. Jin, On stratied L-convergence spaces: Pretopological axioms and diagonal axioms, Fuzzy Sets and Systems, 204 (2012), 40{52. [18] L. Li and Q. Jin, p-topologicalness and p-regularity for lattice-valued convergence spaces, Fuzzy Sets and Systems, 238 (2014), 26{45. [19] L. Li and Q. Jin, lattice-valued convergence spaces: weaker regularity and p-regularity, Abstract and Applied Analysis, Volume 2014, Article ID 328153, 11 pages. [20] L. Li, Q. Jin and K. Hu, On stratied L-convergence spaces: Fischer's diagonal axiom, Fuzzy Sets and Systems, 267 (2015), 31{40. [21] L. Li, Q. Jin, G. Meng and K. Hu, The lower and upper p-topological (p-regular) modications for lattice-valued convergence spaces, Fuzzy Sets and Systems, 282 (2016), 47{61. [22] D. Orpen and G. Jager, Lattice-valued convergence spaces: extending the lattice context, Fuzzy Sets and Systems, 190 (2012), 1{20. [23] B. Pang and F. Shi, Degrees of compactness in (L;M)-fuzzy convergence spaces, Fuzzy Sets and Systems, 251 (2014), 1{22. [24] G. D. Richardson and D. C. Kent, Probabilistic convergence spaces, Journal of the Australian Mathematical Society, 61 (1996), 400{420. [25] W. Yao, On many-valued stratied L-fuzzy convergence spaces, Fuzzy Sets and Systems, 159 (2008), 2503{2519. [26] W. Yao, Quantitative domains via fuzzy sets: Part I: continuity of fuzzy directed complete posets, Fuzzy Sets and Systems, 161 (2010), 973{987. [27] W. Yao and F. Shi, Quantitative domains via fuzzy sets: Part II: Fuzzy Scott topology on fuzzy directed-complete posets, Fuzzy Sets and Systems, 173 (2011), 60{80. [28] D. Zhang, An enriched category approach to many valued topology, Fuzzy Sets and Systems, 158 (2007), 349{366. [29] Q. Zhang, W. Xie and L. Fan, Fuzzy complete lattices, Fuzzy Sets and Systems, 160 (2009), 2275{2291. | ||
آمار تعداد مشاهده مقاله: 1,526 تعداد دریافت فایل اصل مقاله: 881 |