تعداد نشریات | 29 |
تعداد شمارهها | 641 |
تعداد مقالات | 6,336 |
تعداد مشاهده مقاله | 9,889,928 |
تعداد دریافت فایل اصل مقاله | 6,484,153 |
Correspondence between probabilistic norms and fuzzy norms | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 8، دوره 13، شماره 1، اردیبهشت 2016، صفحه 105-114 اصل مقاله (345.31 K) | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2291 | ||
نویسنده | ||
Hua-Peng Zhang* | ||
School of Science, Nanjing University of Posts and Telecommuni- cations, Nanjing 210023, China | ||
چکیده | ||
In this paper, the connection between Menger probabilistic norms and H"{o}hle probabilistic norms is discussed. In addition, the correspondence between probabilistic norms and Wu-Fang fuzzy (semi-) norms is established. It is shown that a probabilistic norm (with triangular norm $min$) can generate a Wu-Fang fuzzy semi-norm and conversely, a Wu-Fang fuzzy norm can generate a probabilistic norm. | ||
کلیدواژهها | ||
Probabilistic norm؛ Fuzzy norm | ||
مراجع | ||
[1] C. Alegre and S. Romaguera, Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-)norms, Fuzzy Sets and Systems, 161 (2010), 2181{2192. [2] C. Alsina, M. J. Frank and B. Schweizer, Associative Functions: Triangular Norms and Copulas, World Scientic Publishing, Singapore, 2006. [3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3) (2003), 687{705. [4] T. Bag and S. K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets and Systems, 159 (2008), 670{684. [5] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429{436. [6] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992), 239{248. [7] O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, Dordrecht, 2001. [8] U. Hohle, Minkowski functionals of L-fuzzy sets, in: P.P. Wang, S.K. Chang (Eds.), Fuzzy sets: theory and applications to policy analysis and information systems, Plenum Press, New York, (1980), 1324. [9] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215{229. [10] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143{ 154. [11] A. K. Katsaras, Linear fuzzy neighborhood spaces, Fuzzy Sets and Systems, 16 (1985), 25{40. [12] A. K. Katsaras, Locally convex topologies induced by fuzzy norms, Global Journal of Mathematical Analysis, 1(3) (2013), 83{96. [13] E. P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000. [14] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336{344. [15] B. Lafuerza-Guillen and P. K. Harikrishnan, Probabilistic normed spaces, World Scientic Publishing, Singapore, 2014. [16] M. Ma, A comparison between two denitions of fuzzy normed spaces, J. Harbin Inst. Technology Suppl. Math., (in Chinese), (1985), 47{49. [17] S. Nadaban and I. Dzitac, Atomic decompositions of fuzzy normed linear spaces for wavelet applications, Informatica, 25(4) (2014), 643{662. [18] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. & Computing, 17(1-2) (2005), 475{484. [19] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland series in Probability and Applied Mathematics, North-Holland, New York, 1983. [20] C. Sempi, A short and partial history of probabilistic normed spaces, Mediterr. J. Math., 3 (2006), 283{300. [21] C. X. Wu and J. X. Fang, Fuzzy generalization of Kolmogoro's theorem, J. Harbin Inst. Technology, (in Chinese), 1 (1984), 1{7. [22] C. X. Wu and M. Ma, Fuzzy norms, probabilistic norms and fuzzy metrics, Fuzzy Sets and Systems, 36 (1990), 137{144. [23] C. H. Yan and J. X. Fang, Generalization of Kolmogoro's theorem to L-topological vector spaces, Fuzzy Sets and Systems, 125 (2002), 177{183. | ||
آمار تعداد مشاهده مقاله: 1,439 تعداد دریافت فایل اصل مقاله: 1,067 |