تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,158 |
تعداد مشاهده مقاله | 9,077,004 |
تعداد دریافت فایل اصل مقاله | 5,928,316 |
FUZZY LOGISTIC REGRESSION: A NEW POSSIBILISTIC MODEL AND ITS APPLICATION IN CLINICAL VAGUE STATUS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 8، شماره 1، اردیبهشت 2011، صفحه 1-17 اصل مقاله (227.27 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2011.232 | ||
نویسندگان | ||
Saeedeh Pourahmad1؛ S. Mohammad Taghi Ayatollahi ![]() | ||
1Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71345-1874, Iran | ||
2Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71345-1874, Iran | ||
3Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran | ||
چکیده | ||
Logistic regression models are frequently used in clinical research and particularly for modeling disease status and patient survival. In practice, clinical studies have several limitations For instance, in the study of rare diseases or due ethical considerations, we can only have small sample sizes. In addition, the lack of suitable and advanced measuring instruments lead to non-precise observations and disagreements among scientists in defining disease criteria have led to vague diagnosis. Also, specialists often report their opinion in linguistic terms rather than numerically. Usually, because of these limitations, the assumptions of the statistical model do not hold and hence their use is questionable. We therefore need to develop new methods for modeling and analyzing the problem. In this study, a model called the `` fuzzy logistic model '' is proposed for the case when the explanatory variables are crisp and the value of the binary response variable is reported as a number between zero and one (indicating the possibility of having the property). In this regard, the concept of `` possibilistic odds '' is also introduced. Then, the methodology and formulation of this model is explained in detail and a linear programming approach is use to estimate the model parameters. Some goodness-of-fit criteria are proposed and a numerical example is given as an example. | ||
کلیدواژهها | ||
Logistic Regression؛ Clinical research؛ Fuzzy logistic regression؛ Possibilistic odds | ||
مراجع | ||
bibitem{Ag:cda} A. Agresti, {it Categorical data analysis}, Wiley, New york, 2002. bibitem{ArTa:Epflrm} A. R. Arabpour and M. Tata, {it Estimating the parameters of a fuzzy linear regression model}, Iranian Journal of Fuzzy Systems, {bf 5} (2008), 1-19. bibitem{BaWhGo:Lrmlsur} S. C. Bagley, H. White and B. A. Golomb, {it Logistic regression in the medical literature: standards for use and reporting with particular attention to one medical domain}, Journal of Clinical Epidemiology, {bf 54} (2001), 979-985. bibitem{Cel:Lsmffvd} A. Celmins, {it Least squares model fitting to fuzzy vector data}, Fuzzy Sets and Systems, {bf 22} (1987), 260-269. bibitem{CoDuGiSa:Lselrmfr} R. Coppi, P. D'Urso, P. Giordani and A. Santoro, {it Least squares estimation of a linear regression model with LR fuzzy response}, Computational Statistics and Data Analysis, {bf 51} (2006), 267-286. bibitem{Di:Lsfsfv} P. Diamond, {it Least squares fitting of several fuzzy variables}, Proc. of the Second IFSA Congress, Tokyo, (1987), 20-25. bibitem{DuKeMePr:Fia} D. Dubois, E. Kerre, R. Mesiar and H. Prade, {it Fuzzy interval analysis, In: D. Dubois, H. Prade, eds.}, Fundamentals of Fuzzy Sets, Kluwer, 2000. bibitem{FaBrKaHa:Haprinme} A. S. Fauci, E. Braunwald, D. L. Kasper, S. L. Hauser, D. L. Longo, J. L. Jameson and J. Loscalzo, {it Harrison's principals of internal medicine}, Wiley, New York, {bf II} (2008), 2275-2279. bibitem{GAMs:G} GAMS (General Algebraic Modeling System), {it A high-level modeling system for mathematical programming and optimization}, GAMS Development Corporation, Washington, DC, USA, 2007. bibitem{HaMaYa:Aeflr} H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, {it A note on evaluation of fuzzy linear regression models by comparing membership functions}, Iranian Journal of Fuzzy Systems, {bf 6} (2009), 1-6. bibitem{HoSoDo:Fulelireanus} D. H. Hong, J. Song and H. Y. Do, {it Fuzzy least-squares linear regression analysis using shape preserving operation}, Information Sciences, {bf 138} (2001), 185-193. bibitem{Lingo:A} LINGO 8.0, {it A linear programming, integer programming, nonlinear programming and global optimization solver}, Lindo System Inc, 1415 North Dayton Str., Chicago, 2003. bibitem{MATLAB:A} MATLAB R., {it A technical computing environment for high-performance numeric computation and Visualization}, The Math Works Inc., 2007. bibitem{MiTa:Plrlpa} S. Mirzaei Yeganeh and S. M. Taheri, {it Possibilistic logistic regression by linear programming approach}, Proc. of the 7th Seminar on Probability and Stochastic Processes, Isfahan University of Technology, Isfahan, Iran, (2009), 139-143. bibitem{MoTa:Pedomodel} J. Mohammadi and S. M. Taheri, {it Pedomodels fitting with fuzzy least squares regression}, Iranian Journal of Fuzzy Systems, {bf 1} (2004), 45-61. bibitem{Pe:Alfm} G. Peters, {it A linear forecasting model and its application in economic data}, Journal of Forecasting, {bf 20} (2001), 315-328. bibitem{RoPe:Mtfgrfr} S. Roychowdhury and W. Pedrycz, {it Modeling temporal functions with granular regression and fuzzy rule}, Fuzzy Sets and Systems, {bf 126} (2002), 377-387. bibitem{SaGi:A} B. Sadeghpour and D. Gien, {it A goodness of fit index to reliability analysis in fuzzy model, In: A. Grmela, ed., Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation}, WSEAS Press, Greece, (2002), 78-83. bibitem{Sh:Frm} A. F. Shapiro, {it Fuzzy regression models}, ARC, 2005. bibitem{TaHe:Amu} B. D. Tabaei, and W. H. Herman, {it A multivariate logistic regression equation to screen for Diabetes}, Diabetes Care, {bf 25} (2002), 1999-2003. bibitem{Ta:Trends} S. M. Taheri, {it Trends in fuzzy statistics}, Austrian Journal of Statistics, {bf 32} (2003), 239-257. bibitem{TaKe:Flar} S. M. Taheri and M. Kelkinnama, {it Fuzzy least absolutes regression}, Proc. of 4th International IEEE Conference on Intelligent Systems, Varna, Bulgaria, {bf 11} (2008), 55-58. bibitem{TaUeAs:Lraw} H. Tanaka, S. Uejima, K. Asai, {it Linear regression analysis with fuzzy model}, IEEE Trans. Systems Man Cybernet., {bf 12} (1982), 903-907. bibitem{VaBa:Fast} E. Van Broekhoven and B. D. Baets, {it Fast and accurate of gravity defuzzification of fuzzy systems outputs defined on trapezoidsal fuzzy partitions}, Fuzzy Sets and Systems, {bf 157} (2006), 904-918. bibitem{Za:Fs} L. A. Zadeh, {it Fuzzy sets}, Information and Control, {bf 8} (1965), 338-353. bibitem{Zimm:Fu} H. J. Zimmermann, {it Fuzzy set theory and its applications}, 3rd ed., Kluwer, Dodrecht, 1996. | ||
آمار تعداد مشاهده مقاله: 2,832 تعداد دریافت فایل اصل مقاله: 4,708 |