تعداد نشریات | 27 |
تعداد شمارهها | 565 |
تعداد مقالات | 5,815 |
تعداد مشاهده مقاله | 8,126,710 |
تعداد دریافت فایل اصل مقاله | 5,442,721 |
On metric spaces induced by fuzzy metric spaces | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 10، دوره 13، شماره 2، تیر 2016، صفحه 145-160 اصل مقاله (398.66 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2364 | ||
نویسندگان | ||
D. Qiu* ؛ R. Dong؛ H. Li | ||
College of Mathematics and Physics,, Chongqing University of Posts and Telecommunications,, Nanan, Chongqing, 400065, P. R. China | ||
چکیده | ||
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some problems for fuzzy metric spaces in the literature, which are shown by examples in this paper. | ||
کلیدواژهها | ||
Fuzzy analysis؛ Complete metric spaces؛ Fuzzy metric؛ H-type t-norms | ||
مراجع | ||
[1] T. Altun and D. Mihet, Ordered non-archimedean fuzzy metric spaces and some xed point results, Fixed Point Theory Appl., Article ID 782680, 2010, 11 pages. [2] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, American Mathematical Society, Ann Arbor, 2001. [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst., 64(2) (1994), 395{399. [4] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Set Syst., 90(2) (1997), 365{368. [5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set Syst., 27(2) (1989), 385{389. [6] V. Gregori, A. Lopez-Crevillen, S. Morillas and A. Sapena, On convergence in fuzzy metric spaces, Topol. Appl., 156 (18) (2009), 3002{3006. [7] V. Gregori, J. Mi~nana and S. Morillas, Some questions in fuzzy metric spaces, Fuzzy Set Syst., 204(1) (2012), 71{85. [8] V. Gregori, J. Mi~nana and S. Morillas, A note on local bases and convergence in fuzzy metric spaces, Topol. Appl., 163 (15) (2014), 142{148. [9] V. Gregori, S. Morillas and A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy Set Syst., 161(5) (2010), 2193{2205. [10] V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Set Syst., 107(1) (2011), 95{111. [11] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Set Syst., 115(3) (2000), 485{489. [12] V. Gregori and S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Set Syst., 130 (3) (2002), 399{404. [13] V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Set Syst., 144 (3) (2004), 411{420. [14] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Set Syst., 125 (2) (2002), 245{252. [15] O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, Dordrecht, 2001. [16] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Set Syst., 12(1) (1984), 215{229. [17] E. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer, Dordrecht (2000). [18] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11(2) (1975), 326{334. [19] C. Li, On some results of metrics induced by a fuzzy ultrametric, Filomat, 27(6) (2013), 1133{1140. [20] K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA, 28(1) (1942), 535{537. [21] D. Mihet, Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set Syst., 159(4) (2008), 739{744. [22] E. Pap, O. Hadzio and R. Mesiar, A xed point theorem in probabilistic metric spaces and applications in fuzzy set theory, J. Math. Anal. Appl., 202 (2) (1996), 433{449. [23] D. Qiu and W. Zhang, The strongest t-norm for fuzzy metric spaces, Kybernetika,49 (1) (2013), 141{148. [24] D. Qiu, W. Zhang and C. Li, Extension of a class of decomposable measures using fuzzy pseudometrics, Fuzzy Set Syst., 222(1) (2013), 33{44. [25] V. Radu, Some suitable metrics on fuzzy metric spaces, Fixed Point Theory, 5 (2) (2004), 323{347. [26] A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl., 3(1) (2005), 257{265. [27] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. [28] A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol., 2(1) (2001), 63{76. [29] P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzz. Math., 9(1) (2001), 75{80. [30] L. A. Zadeh, Fuzzy sets,Inform Control., 8(2) (1965), 338{353. | ||
آمار تعداد مشاهده مقاله: 1,503 تعداد دریافت فایل اصل مقاله: 1,188 |