تعداد نشریات | 27 |
تعداد شمارهها | 556 |
تعداد مقالات | 5,734 |
تعداد مشاهده مقاله | 8,017,353 |
تعداد دریافت فایل اصل مقاله | 5,389,402 |
Bisimulation for BL-general fuzzy automata | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 13، شماره 4، آبان 2016، صفحه 35-50 اصل مقاله (496.88 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2594 | ||
نویسندگان | ||
M. Shamsizadeh* 1؛ M. M. Zahedi1؛ K. Abolpour2 | ||
1Department of Mathematics, Graduate University of Advanced Technology, Kerman, Iran | ||
2Department of Mathematics, Kazerun Branch, Islamic Azad University, Kazerun, Iran | ||
چکیده | ||
In this note, we define bisimulation for BL-general fuzzy automata and show that if there is a bisimulation between two BL-general fuzzy automata, then they have the same behavior. For a given BL-general fuzzy automata, we obtain the greatest bisimulation for the BL-general fuzzy automata. Thereafter, if we use the greatest bisimulation, then we obtain a quotient BL-general fuzzy automata and this quotient is minimal, furthermore there is a morphism from the first one to its quotient. Also, for two given BL-general fuzzy automata we present an algorithm, which determines bisimulation between them. Finally, we present some examples to clarify these new notions. | ||
کلیدواژهها | ||
BL-general fuzzy automata؛ Bisimulation؛ Reduction؛ General fuzzy automata؛ Quotient automata | ||
مراجع | ||
[1] K. Abolpour and M. M. Zahedi, BL-general fuzzy automata and accept behavior, Journal Applied Mathematics and Computing, 38 (2012), 103-118. [2] K. Abolpour and M. M. Zahedi, Isomorphism between two BL-general fuzzy automata, Soft Computing, 16 (2012), 729-736. [3] C. Baier, B. Engelen and M. Majster Cederbaum, Deciding bisimilarity and similarity for probabilistic processes, Journal of Computer and System Sciences, 60 (2000), 187-231. [4] P. Buchholz, Bisimulation relations for weighted automata, Theoretical Computer Science, 393 (2008), 109-123. [5] Y. Cao, G. Chen and E. Kerre, Bisimulations for fuzzy transition systems, IEEE Transactions on Fuzzy Systems, 19 (2011), 540-552. [6] Y. Cao, H. Wang, S. X. Sun and G. Chen, A behavioral distance for fuzzy-transition systems, IEEE Transactions on Fuzzy Systems, 21 (2012), 735-747. [7] M. Ciric, J. Ignjatovic, M. Basic and I. Jancic, Nondeterministic automata: equivalence, bisimulations, and uniform relations, Information Sciences, 261 (2013), 185-218. [8] M. Ciric, J. Ignjatovic, N. Damljanovic and M. Basic, Bisimulations for fuzzy automata, Fuzzy Sets and Systems, 186 (2012) 100-139. [9] M. Ciric, J. Ignjatovic, I. Jancic and N. Damljanovic, Computation of the greatest simulations and bisimulations between fuzzy automata, Fuzzy Sets and Systems, 208 (2012), 22-42. [10] N. Damljanovic, M. Ciric and J. Ignjatovic, Bisimulations for weighted automata over an additively idempotent semiring, Theoretical Computer Science, 534 (2014), 86-100. [11] W. Deng and D. W. Qiu, Supervisory control of fuzzy discrete event systems for simulation equivalence, IEEE Transactions on Fuzzy Systems, 23 (2015), 178-192. [12] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal of Approximate Reasoning, 38 (2005), 175-214. [13] C. L. Giles, C. W. Omlin and K. K. Thornber, Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems, Proceedings of IEEE, 87 (1999), 1623-1640. [14] M. M. Gupta, G. N. Saridis and B. R. Gaines, Fuzzy Automata and Decision Processes, North Holland, New York, (1977), 111-175. [15] P. Hajek, Metamathematics of fuzzy logic, Trends in Logic, Kluwer, Dordercht, 4 (1998). [16] J. Hgberg, A. Maletti and J. May, Backward and forward bisimulation minimisation of tree automata, In: J. Holub, J. drek (Eds.), IAA07, in: Lecture Notes in Computer Science, 4783 (2007), 109-121. [17] J. Hgberg, A. Maletti and J. May, Backward and forward bisimulation minimisation of tree automata, Theoretical Computer Science, 410 (2009) 3539-3552. [18] D. C. Kozen, Automata and computability, Springer, USA, 1997. [19] E. T. Lee and L. A. Zadeh, Note on fuzzy languages, Information Sciences, 1 (1969), 421-434. [20] L. Li and D. Qiu, On the state minimization of fuzzy automata, IEEE Transactions on Fuzzy Systems, 23 (2015), 434-443. [21] N. Lynch and F. Vaandrager, Forward and backward simulations, Information and Computation, 121 (1995), 214-233. [22] D. S. Malik and J. N. Mordeson, Fuzzy Automata and Languages: Theory and Applications, Chapman Hall, CRC Boca Raton, London, New York, Washington DC, 2002. [23] D. S. Malik and J. N. Mordeson, Fuzzy discrete structures, Physica-Verlag, New York, (2000), London, 2002. [24] R. Milner, Acalculus of communicating systems, In: G. Goos, J. Hartmanis (Eds.), Lecture Notes in Computer Science, Springer, 92 (1980). [25] C. W. Omlin, K. K. Thornber and C. L. Giles, Fuzzy nite-state automata can be deter- ministically encoded in recurrent neural networks, IEEE Transactions on Fuzzy Systems, 5 (1998), 76-89. [26] D. Park, Concurrency and automata on innite sequences, In: P.Deussen(Ed.), Proceedings of the 5th GI Conference, Karlsruhe, Germany, Lecture Notesin Computer Science, Springer- Verlag, 104, (1981), 167-183. [27] W. Pedrycz and A. Gacek, Learning of fuzzy automata, International Journal of Computational Intelligence and Applications, 1 (2001), 19-33. [28] K. Peeva, Behavior, reduction and minimization of nite L-automata, Fuzzy Sets and Systems, 28 (1988), 171-181. [29] K. Peeva, Equivalence, reduction and minimization of nite automata over semirings, Theoretical Computer Science, 88 (1991), 269-285. [30] D. Qiu, Automata theory based on complete residuated lattice-valued logic, Science in China Series: Information Sciences, 44 (2001), 419-429. [31] D. Qiu, Automata theory based on complete residuated lattice-valued logic (II), Science in China Series F: Information Sciences, 45 (2002), 442-452. [32] D. Qiu, Characterizations of fuzzy nite automata, Fuzzy Sets and Systems, 141 (2004), 391-414. [33] D. Qiu, Pumping lemma in automata theory based on complete residuated lattice-valued logic: A not, Fuzzy Sets and Systems, 157 (2006), 2128-2138. [34] D. Qiu, Supervisory control of fuzzy discrete event systems: a formal approach, IEEE Transactions on Systems, Man and CyberneticsPart B, 35 (2005), 72-88. [35] E. S. Santos, Maxmin automata, Information Control, 13 (1968), 363-377. [36] V. Topencharov and K. Peeva, Equivalence, reduction and minimization of nite fuzzy au- tomata, Journal of Mathematical Analysis and Applications, 84 (1981), 270-281. [37] E. Turunen, Boolean deductive systems of BL-algebras, Archive for Mathematical Logic, 40 (2001), 467-473. [38] W. G. Wee, On generalization of adaptive algorithm and application of the fuzzy sets concept to pattern classication, Ph.D. Thesis, Purdue University, Lafayette, IN, 1967. [39] W. G. Wee and K. S. Fu, A formulation of fuzzy automata and its application as a model of learning systems, IEEE Transactions on Systems, Man and Cybernetics, 5 (1969), 215-223. [40] L. Wu and D. Qiu, Automata theory based on complete residuated lattice-valued logic: Re- duction and minimization, Fuzzy Sets and Systems, 161 (2010), 1635-1656. [41] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965,) 338-353. | ||
آمار تعداد مشاهده مقاله: 1,151 تعداد دریافت فایل اصل مقاله: 1,031 |