تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,822 |
تعداد مشاهده مقاله | 8,157,913 |
تعداد دریافت فایل اصل مقاله | 5,457,724 |
LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 5، دوره 8، شماره 2، شهریور 2011، صفحه 67-89 اصل مقاله (472.02 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2011.277 | ||
نویسنده | ||
Gunther Jager | ||
Department of Statistics, Rhodes University, 6140 Grahamstown, South Africa | ||
چکیده | ||
We study L-categories of lattice-valued convergence spaces. Such categories are obtained by \fuzzifying" the axioms of a lattice-valued convergence space. We give a natural example, study initial constructions and function spaces. Further we look into some L-subcategories. Finally we use this approach to quantify how close certain lattice-valued convergence spaces are to being lattice-valued topological spaces. | ||
کلیدواژهها | ||
L-fuzzy convergence؛ L-topology؛ L-lter؛ L-limit space؛ L-category؛ Fuzzy category | ||
مراجع | ||
[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, Wiley, New York, 1989. [2] T. M. G. Ahsanullah and J. Al-Mufarrij, Frame valued stratied generalized convergence groups, Quaest. Math., 31 (2008), 279-302. [3] A. Craig and G. Jager, A common framework for lattice-valued uniform spaces and proba- bilistic uniform convergence spaces, Fuzzy Sets and Systems, 160 (2009), 1177-1203. [4] U. Hohle, Commutative, residuated L-monoids, In: Non-classical Logics and Their Applications to Fuzzy Subsets (U. Hohle, E.P. Klement, eds.), Kluwer, Dordrecht, (1995), 53-106. [5] U. Hohle, Locales and L-topologies, In: Categorical Methods in Algebra and Topology (H. E. Porst, eds.), Mathematik-Arbeitspapiere 48, Univ. Bremen, (1997), 223-250. [6] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (U. Hohle, S. E. Rodabaugh, eds.), Kluwer, Dordrecht, (1999), 123-272. [7] G. Jager, Fuzzy properties in fuzzy convergence spaces, Int. J. Math. Math. Sci., 29 (2002), 737-748. [8] G. Jager, A category of L-fuzzy convergence spaces, Quaest. Math., 24 (2001), 501-517. [9] G. Jager, Subcategories of lattice valued convergence spaces, Fuzzy Sets and Systems, 156 (2005), 1-24. [10] G. Jager, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets and Systems, 158 (2007), 424-435. [11] G. Jager, Fischer's diagonal condition for lattice-valued convergence spaces, Quaest. Math., 31 (2008), 11-25. [12] G. Jager, Lattice-valued convergence spaces and regularity, Fuzzy Sets and Systems, 159 (2008), 2488-2502. [13] G. Jager, Compactication of lattice-valued convergence spaces, Fuzzy Sets and Systems, 161 (2010), 1002-1010. [14] T. Kubiak and A. P. Sostak , A fuzzication of the category of M-valued L-topological spaces, App. Gen. Top., 5 (2004), 137-154. [15] E. Lowen and R. Lowen, On measures of compactness in fuzzy topological spaces, J. Math. Anal. Appl., 131 (1988), 329-340. [16] H. Poppe, Compactness in general function spaces, VEB Deutscher Verlag Der Wissenschaften, Berlin, 1974. [17] A. Sostak, On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces, In: General Topology and Its Relations to Modern Analysis and Algebra, VI (Prague, 1986), Res. Exp. Math., Heldermann, Berlin, 16 (1988), 519-532. [18] A. Sostak, Fuzzy categories versus categories of fuzzily structured sets: elements of the theory of fuzzy categories, In: Categorical Methods in Algebra and Topology (H. E. Porst, eds.), Mathematik-Arbeitspapiere 48, Univ. Bremen, (1997), 407-437. [19] A. Sostak, Fuzzy categories related to algebra and topology, Tatra Mt. Math. Publ., 16 (1999), 159-185. [20] A. P. Sostak, Fuzzy functions and an extension of the category L-TOP of Chang-Goguen L- topological spaces, In: Proceedings of the 9th Prague Topological Symposium (Prague 2001), Topology ATLAS, Totoronto, (2002), 271-294. [21] A. P. Sostak, On some fuzzy categories related to category L-TOP of L-topological spaces, In: Topological and Algebraic Structures in Fuzzy Sets (eds., S. E. Rodabaugh and E. P. Klement), Kluwer, (2003), 337-372. [22] A. P. Sostak, L-valued categories: generalities and examples related to algebra and topology, In: Categorical Structures and Their Applications (eds., W. Gahler and G. Preuss), World Scientic, (2004), 291-312. [23] W. Yao, On many-valued stratied L-fuzzy convergence spaces, Fuzzy Sets and Systems, 159 (2008), 2503-2519. [24] W. Yao, On L-fuzzifying convergence spaces, Iranian Journal of Fuzzy Systems, 6 (2009), 63-80. [25] M. S. Ying, A new approach to fuzzy topology, part I, Fuzzy Sets and Systems, 39 (1991), 303-321. [26] Y. Yue and J. Fang, Fuzzy ideals and fuzzy limit structures, Iranian Journal of Fuzzy Systems, 5 (2008), 55-64. | ||
آمار تعداد مشاهده مقاله: 1,955 تعداد دریافت فایل اصل مقاله: 1,087 |