تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,698 |
تعداد مشاهده مقاله | 7,963,567 |
تعداد دریافت فایل اصل مقاله | 5,347,364 |
Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 13، شماره 6، زمستان 2016، صفحه 1-19 اصل مقاله (3.82 MB) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2819 | ||
نویسندگان | ||
Sheng-Chih Yang؛ Cheng-Jian Lin ![]() | ||
Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung City 411, Taiwan, ROC | ||
چکیده | ||
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images. The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution. The proposed RFNFN is based on the two backlight factors that can accurately detect the compensation degree. According to the backlight level, the compensation curve function of a backlight image can be adaptively adjusted. In our experiments, six backlight images are used to verify the performance of proposed method. Experimental results demonstrate that the proposed method performs well in backlight problems. | ||
کلیدواژهها | ||
Neural fuzzy network؛ Recurrent network؛ Differential evolution؛ Fuzzy c-means؛ Backlight compensation؛ Contrast enhancement | ||
مراجع | ||
[1] C. H. Chen, C. J. Lin and C. T. Lin, A recurrent functional-link-based neural fuzzy system and its applications, Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing (CIISP 2007), (2007), 415-420. [2] J. Duan and G. Qiu, Novel histogram processing for colour image enhancement, Proceedings of the Third International Conference on Image and Graphics (ICIG04), Hong Kong, China, (2004), 55-58. [3] A. A. Fahmy and A. M. Abdel Ghany, Adaptive functional-based neuro-fuzzy PID incremental controller structure, Neural Computing and Applications, 26(6) (2015), 1423-1438. [4] M. Hojati and S. Gazor, Hybrid adaptive fuzzy identication and control of nonlinear systems, IEEE Transactions on Fuzzy Systems, 10(2) (2002), 198-210. [5] T. H. Huang, K. T. Shih, S. L. Yeh and H. H. Chen, Enhancement of backlight-scaled images, IEEE Transactions on Image Processing, 22(12) (2013), 4587-4597. [6] H. Kabir, A. Al-Wadud and O. Chae, Brightness preserving image contrast enhancement using weighted mixture of global and local transformation functions, The International Arab Journal of Information Technology, 7(4) (2010), 403-410. [7] H. Y. Lin, C. Y. Lin, C. J. Lin, S. C. Yang and C. Y. Yu, A study of digital image enlargement and enhancement, Mathematical Problems in Engineering, Article ID 825169, (2014). [8] D. Menotti, L. Najman, J. Facon and A. A. A. de Araujo, Multi-histogram equalization meth- ods for contrast enhancement and brightness preserving, IEEE Transactions on Consumer Electronics, 53(3) (2007), 1186-1194. [9] A. H. Mohamed, A genetic based neuro-fuzzy controller system, International Journal of Computer Applications, 94(1) (2014), 14-17. [10] M. Panella and A. S. Gallo, An input-output clustering approach to the synthesis of ANFIS networks, IEEE Transaction on Fuzzy Systems, 13(1) (2005), 69-81. [11] O. Patel, Y. P. S. Maravi and S. Sharma, A comparative study of histogram equalization based image enhancement techniques for brightness preservation and contrast enhancement, Signal & Image Processing: An International Journal (SIPIJ), 4(5) (2013), 11-25. [12] T. K. S. Paterlini, Dierential evolution and particle swarm optimization in partitional clus- tering, Computational Statics & Data Analysis, 50(5) (2006), 1220-1247. [13] A. P. Piotrowski, Dierential evolution algorithms applied to neural network training suer from stagnation, Applied Soft Computing, 21(2014), 382V406. [14] R. Storn and K. Price, Dierential evolution-A simple and ecient heuristic for global op- timization over continuous spaces, Journal of Global Optimization, 11(4) (1997), 341-359. [15] M. A.Wadudx, M. H. Kabir, M. A. A. Dewan and O. Chae, A dynamic histogram equalization for image contrast enhancement, IEEE Transactions on Consumer Electronics, 53(2) (2007), 593-600. [16] J. Yen and R. Langari, Fuzzy Logic: intelligence, control, and information, Prentice Hall, 1998. [17] C. Y. Yu, H. Y. Lin and R. N. Lin, Eight-scale image contrast enhancement based on adaptive inverse hyperbolic, International Symposium on Computer, Consumer and Control, Taichung, Taiwan, (2014), 98-102. [18] C. Y. Yu, H. Y. Lin, Y. C. Ouyang and T. W. Yu, Modulated AIHT image contrast en- hancement algorithm based on contrast-limited adaptive histogram equalization, International Journal on Applied Mathematics and Information Sciences, 7(2) (2013), 449-454. [19] C. Y. Yu, Y. C. Ouyang, C. M. Wang and C. I. Chang, Adaptive inverse hyperbolic tan- gent algorithm for dynamic contrast adjustment in displaying scenes, EURASIP Journal on Advances in Signal Processing, 485151 (2010), 1-20. [20] J. Yue, J. Liu, X. Liu and W. Tan, Identication of nonlinear system based on ANFIS with subtractive clustering, The Sixth World Congress on Intelligent Control and Automation (WCICA 2006), 2006, 1852-1856. [21] K. Zuiderveld, Contrast limited adaptive histogram equalization, In: P. Heckbert: Graphics Gems IV, Academic Press 1994 | ||
آمار تعداد مشاهده مقاله: 753 تعداد دریافت فایل اصل مقاله: 1,232 |