تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,697 |
تعداد مشاهده مقاله | 7,961,905 |
تعداد دریافت فایل اصل مقاله | 5,345,939 |
Some results on $L$-complete lattices | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 8، دوره 13، شماره 6، زمستان 2016، صفحه 135-152 اصل مقاله (442.34 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2825 | ||
نویسندگان | ||
Anatolij Dvurecenskij1؛ Omid Zahiri* 2 | ||
1Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, SK-814 73 Bratislava, Slovakia and Depart. Algebra Geom, Palacky Univer., 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic | ||
2University of Applied Science and Technology, Tehran, Iran | ||
چکیده | ||
The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets. First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a special element of $L^P$. A relation between $L$-fuzzy complete lattices and fixpoints is found and fuzzy versions of monotonicity, rolling, fusion and exchange rules on $L$-complete lattices are stated. Finally, we investigate the set of all monotone maps on a fuzzy directed complete posets, $DCPO$s, and find a condition which under the set of all fixpoints of a monotone map on a fuzzy $DCPO$ is a fuzzy $DCPO$. | ||
کلیدواژهها | ||
Fuzzy complete lattice؛ Fixpoint؛ Fuzzy DCPO؛ Fuzzy directed poset؛ Monotone map | ||
مراجع | ||
[1] R. Belohlavek, Fuzzy relational systems: foundations and principles, Kluwer Acad. Publ., New York, 2002. [2] R. Belohlavek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128 (2004), 277{298. [3] T. S. Blyth, Lattices and ordered algebraic structures, Springer-Verlag, London, 2005 [4] U. Bodenhofer, A similarity-based generalization of fuzzy orderings preserving the classical axioms, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 8(5) (2000), 593{610. [5] U. Bodenhofer, Representations and constructions of similarity-based fuzzy orderings, Fuzzy Sets and Systems, 137(1) (2003), 113{136. [6] R. A. Borzooei, A. Dvurecenskij and O. Zahiri, L-Ordered and L-lattice ordered groups, Information Sciences, 314 (2015), 118{134. [7] B. A. Davey and H. A. Priestley, Introduction to lattices and order, Cambridge University Press, Second edition, 2002. [8] A. Davis, A characterization of complete lattices, Pacic J. Math., 5 (1955), 311{319. [9] M. Demirci, A theory of vague lattices based on many-valued equivalence relations - I: general representation results, Fuzzy Sets and Systems, 151(3) (2005), 437{472. [10] M. Demirci. A theory of vague lattices based on many-valued equivalence relations - II: com- plete lattices, Fuzzy Sets and Systems, 151(3) (2005), 473{489. [11] L. Fan, A new approach to quantitative domain theory, Electronic Notes Theor. Comp. Sci., 45 (2001), 77{87. [12] R. Fuentes-Gonzalez, Down and up operators associated to fuzzy relations and t-norms: A denition of fuzzy semi-ideals, Fuzzy Sets and Systems, 117 (2001), 377{389. [13] P. T. Johnstone, `Stone Spaces, Cambridge University Press, Cambridge, 1982. [14] H. Lai and D. Zhang, Complete and directed complete -categories, Theor. Computer Sci., 388 (2007), 1{25. [15] S. Su and Q. Li, Algebraic fuzzy directed-complete posets, Neural Comput. & Applic., 21(1) (2012), 255{265. [16] A. Tarski, A lattice theoretical xed point theorem and its applications, Pacic J. Math., 5 (1955), 285{309. [17] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets and Systems, 17(3) (1985), 313{328. [18] K. R. Wagner, Solving recursive domain equations with enriched categories, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-94-159, July 1994. [19] W. Yao, An approach to fuzzy frames via fuzzy posets, Fuzzy Sets and Systems, 166 (2011), 75{89. [20] W. Yao and L. X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Quart., 55 (2009), 105{112. [21] W. Yao, Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets, Fuzzy Sets and Systems, 161 (2010), 973{987. [22] W. Yao and F. G. Shi, Quantitative domains via fuzzy sets: Part II: Fuzzy Scott topology on fuzzy directed-complete posets, Fuzzy Sets and Systems, 173 (2011), 60{80. [23] Q. Y. Zhang and L. Fan, Continuity in quantitative domains, Fuzzy Sets and Systems, 154 (2005), 118{131. [24] Q. Y. Zhang, W. X. Xie and L. Fan, Fuzzy complete lattices, Fuzzy Sets and Systems, 160 (2009), 2275{2291. | ||
آمار تعداد مشاهده مقاله: 575 تعداد دریافت فایل اصل مقاله: 771 |