
تعداد نشریات | 32 |
تعداد شمارهها | 739 |
تعداد مقالات | 7,173 |
تعداد مشاهده مقاله | 11,730,483 |
تعداد دریافت فایل اصل مقاله | 8,055,307 |
A SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 8، شماره 3، دی 2011، صفحه 1-21 اصل مقاله (433.79 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2011.283 | ||
نویسندگان | ||
H. Nezamabadi-pour* 1؛ S. Yazdani2؛ M. M. Farsangi3؛ M. Neyestani3 | ||
1Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده | ||
In practice, obtaining the global optimum for the economic dispatch {bf (ED)} problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new and efficient method for solving the economic dispatch problem with non-smooth cost functions using a Fuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm deals with the issue of controlling the exploration and exploitation capabilities of a heuristic search algorithm in which the real version of Genetic Algorithm (RGA) is equipped with a Fuzzy Logic Controller (FLC) which can efficiently explore and exploit optimum solutions. To validate the results obtained by the proposed FAGA, it is compared with a Real Genetic Algorithm (RGA). Moreover, the results obtained by FAGA and RGA are also compared with those obtained by other approaches reported in the literature. It was observed that the FAGA outperforms the other methods in solving the power system economic load dispatch problem in terms of quality, as well as convergence and success rates. | ||
کلیدواژهها | ||
Economic dispatch؛ Genetic Algorithm؛ %Fuzzy adaptive genetic algorithm؛ Non-smooth cost functions | ||
مراجع | ||
bibitem{Caponio:FAMA} A. Caponio, G. L. Cascella, F. Neri, N. Salvatore and M. Sumner, {it A fast adaptive memetic algorithm for off-line and on-line control design of PMSM drives}, IEEE Trans. on Systems, Man and Cybernetics-Part B, Special Issue on Memetic Algorithms, {bf 37}textbf{(1)} (2007), 28-41. bibitem{Chatu:PSOforED} K. T. Chaturvedi, M. Pandit and L. Srivastava, {it Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch}, IEEE Trans. Power Syst., {bf 23}textbf{(3)} (2008), 1079-1087. bibitem{Chen:LS-ED} P. H. Chen and H. C. Chang, {it Large-scale economic dispatch by genetic algorithm}, IEEE Trans. Power Syst., {bf 10}textbf{(4)} (1995), 1919-1926. bibitem{Chiang:ImpGA} C. L. Chiang, {it Improved genetic algorithm for power economic dispatch of units with valve- point effects and multiple fuels}, IEEE Trans. Power Syst., {bf 20}textbf{(4)} (2005), 1690-1699. bibitem{Eiben:PCinEA} A. E. Eiben, R. Hinterding and Z. Michlewicz, {it Parameter control in evolutionary algorithms}, IEEE Transaction on Evolutionary Computation, {bf 3}textbf{(2)} (1999), 124-141. bibitem{Gaing:PSOforED} Z. L. Gaing, {it Particle swarm optimization to solving the economic dispatch considering the generator constraints}, IEEE Trans. Power Syst., {bf 18}textbf{(3)} (2003), 1187-1195. bibitem{Herrera:MAwithCHC} F. Herrera, N. Krasnogor and D. Molina, {it Real-coded memetic algorithms with crossover hill- climbing}, Evolutionary Computation, {bf 12}textbf{(3)} (2004), 273-302. bibitem{Herrera:ACofPmbyFLC} F. Herrera and M. Lozano, {it Adaptive control of mutation probability by fuzzy logic controllers}, Parallel Processing Solving from Nature VI, Berlin: Springer, (2000), 335-344. bibitem{Herrera:AFO} F. Herrera and M. Lozano, {it Adaptive fuzzy operators based on coevolution with fuzzy behaviours}, IEEE Transaction on Evolutionary Computation, {bf 5}textbf{(2)} (2001), 1-18. bibitem{Herrera:FAGA} F. Herrera and M. Lozano, {it Fuzzy adaptive genetic algorithm: design, taxonomy, and future directions}, Soft Computing, {bf 7}textbf{} (2003), 545-562. bibitem{Krasnogor:MA} N. Krasnogor and J. Smith, {it A tutorial for competent memetic algorithms: model, taxonomy and design issues}, IEEE Trans. Evol. Comput., {bf 9}textbf{(5)} (2005), 474-488. bibitem{Lee:Adp-NN} K. Y. Lee, A. Sode-Yome and J. H. Park, {it Adaptive Hopfield neural network for economic load dispatch}, IEEE Trans. Power Syst., {bf 13}textbf{(2)} (1998), 519-526. bibitem{Lin:TSforED} W. M. Lin, F. S. Cheng and M. T. Tsay, {it An improved tabu search for economic dispatch with multiple minima}, IEEE Trans. Power Syst., {bf 17}textbf{(1)} (2002), 108-112. bibitem{Mehdizadeh:H-PSO} E. Mehdizadeh, S. Sadi-nezhad and R. Tavakoli-moghaddam, {it Optimaization of fuzzy clastering criteria by a hybrid PSO and fuzzy c--means clustering algorithm}, Iranian Journal of Fuzzy Systems, {bf 5}textbf{(3)} (2008), 1-14 bibitem{Net:MA-home-page} Memetic Algorithms Home Page, http://www.densis.fee.unicamp.br/$sim$moscato /memetic_ home. html. bibitem{Mrz:FLandMAforQAP} P. Merz and B. Freisleben, {it Fitness landscape analysis and memetic algorithms for the quadratic assignment problem}, IEEE Trans. Evol. Comput., {bf 4}textbf{(4)} (2000), 337-352. bibitem{Moscato:MA} P. Moscato, {it On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms}, Memetic Algorithms Home Page, http://www. densis. fee. unicamp. br /$sim $moscato /memetic_ home. html. bibitem{Neyestani:MAforED} M. Neyestani, M. M. Farsangi and H. Nezamabadi-pour, {it Memetic algorithm for economic dispatch with nonsmooth cost functions}, Accepted by Iranian Journal of Electrical and Computer Engineering (IJECE) (in Farsi). bibitem{Oreo:ED-POZ} S. O. Orero and M. R. Irving, {it Economic dispatch of generators with prohibited operating zones: a genetic algorithm approach}, Proc. Inst. Elect. Eng. Gen. Transm. Distrib., {bf 143}textbf{(6)} (1996), 529-534. bibitem{Park:PSOforED} J. B. Park, K. S. Lee, J. R. Shin and K. Y. Lee, {it A particle swarm optimization for economic dispatch with nonsmooth cost functions}, IEEE Trans. Power Syst., {bf 20}textbf{(1)} (2005), 34 -42. bibitem{Rashedi:GSA} E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, {it GSA: a gravitational search algorithm}, Information Sciences, {bf 179}textbf{(13)} (2009), 2232-2248. bibitem{Selva:PSOforED} A. I. Selvakumar and K. Thanushkodi, {it A new particle swarm optimization solution to nonconvex economic dispatch problems}, IEEE Trans. Power Syst., {bf 22}textbf{(1)} (2007), 42-51. bibitem{Sinha:EPforED} N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, {it Evolutionary programming techniques for economic load dispatch}, IEEE Trans. Evol. Comput., {bf 7}textbf{(1)} (2003), 83-94. bibitem{Sum:EDbyACO} T. Sum-im, {it Economic dispatch by ant colony search algorithm}, Proc. IEEE Conference on Cybernetics and Intelligent Systems, (2004), 416-421. bibitem{Wang:EDbyDE} S. K. Wang, J. P. Chiou and C. W. Liu, {it Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm}, IET Generation Transmission & Distribution, {bf 1}textbf{(5)} (2007), 793-803. bibitem{Wong:SA} K. P. Wong and C. C. Fung, {it Simulated annealing based economic dispatch algorithm}, Proc. Inst. Elect. Eng. C, {bf 140}textbf{(6)} (1993), 509-515. bibitem{Wong:GA-SA-ED} K. P. Wong and Y. W. Wong, {it Genetic and genetic simulated-annealing approaches to economic dispatch}, Proc. Inst. Elect. Eng. Gen. Transm. Distrib., {bf 141}textbf{(5)} (1994), 507-513. bibitem{Yang:EPforED} H. T. Yang, P. C. Yang and C. L. Huang, {it Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions}, IEEE Trans. Power Syst., {bf 11}textbf{(1)} (1996), 112-118. bibitem{Zeng:FAGA} X. Zeng and B. Rabenasolo, {it A fuzzy logic based design for adaptive genetic algorithms}, European Congress on Intelligent Techniques and Soft Computing, (1997), 660-664. | ||
آمار تعداد مشاهده مقاله: 2,949 تعداد دریافت فایل اصل مقاله: 3,834 |