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ABSTRACT: In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact 
of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of 
Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of 
the ability of each model in prediction of velocity profile, it is compared with analytic velocity profile. Furthermore, MDS results of 
density number are evaluated by real non-dimensional value for density number of water (Rho*). Based on computational results, 
predicted velocity profile from MDS is in appropriate accordance to analytic solution based on the Navier–Stokes equations. In 
addition, SPC/E and TIP4P models prepare the best prediction of the velocity profile, and are recommended where the averaged 
magnitude of velocity across the nano-channel is essential. Furthermore, a jump in velocity of TIP5P and TIP4P models is revealed in 
the vicinity of the nano-channel walls. However, approximately similar quantity is detected in the flow velocity of all different AWMs 
near the nano-channel walls. Finally, numerical results related to density number show, the TIP5P water model has higher compliance 
with the intended Rho*, and thus this model is suggested, where density number plays an important role in our MDS. 
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Introduction 

Water is known as the most popular liquid in the 
universe. Due to importance of water in nature, its 
properties are one of the most interested areas for scholar 
.However, In spite of more than a century study in the field 
of water; many unresolved questions remain beyond of this 
matter. Therefore, to comprehensive study on 
physicochemical characteristics and flow behavior of water, 
different AWMs are presented. Each model has specific 
features in parameter values and number of charge sites, 
which cause a various success in anticipating the accurate 
quantity and physical trend of a specific physical parameter. 

On the other hand, among the water flow properties, its 
velocity profile and density number play an important role 
in many practical applications such as filtration by carbon-
nanotubes (CNTs) [1-2], micro chemical reactors [3] and 
micro-nano electromechanical systems (MEMS/NEMS) 
[4]. So, it is important to select an appropriate atomistic 
water model in computer simulation such as molecular 
dynamics (MD) approach, which correctly predicts the real 
nature of the water. There are several studies related to the 
impressions of different AWMs on the fluid flow behavior, 
as discussed next. More research is done on the effects of 
water models on fluid flow viscosity [5-7]. 
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    For example, Markesteijn et al. [8] used MDS to show 
the effects of different atomistic water models on the 
viscosity-temperature relation. SPC/E, TIP4P, TIP4P/Ew, 
and TIP4P/2005 AWMs were employed in their study by 
considering Poiseuille flow inside a nano-channel. The 
error value they found for TIP4P/2005 as a best AWM for 
viscosity is lower than 8% against the experimental data. 
Guevara-Carrion et al. [9] carried out the numerical study 
on the impression of different AWMs to predict of several 
transport properties of pure liquid water and its mixtures 
with methanol and ethanol. By using SPC, SPC/E, TIP4P, 
and TIP4P/2005 model, they found that the TIP4P/2005 
model performed better than the other models for all 
properties. 
    On the other hand, Lin et al. [10] examined numerically 
the Lennard-Jones and TIP4P models for flow 
characteristics of a plane Poiseuille flow in a nano-channel. 
They observed larger fluctuation in the velocity profile that 
induced by the TIP4P potential as compared to that induced 
by the LJ potential.  
    More recently, Plankova´ et al. [11] investigated the 
effect of TIP4P/2005 model on density profile and surface 
tension of water vapor–liquid phase interfaces. 
    They used MDS and showed a proper accordance of this 
water model with real nature of the water. Also, Barbosa 
and Barbosa [12] by using MDS studied the density of the 
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electro-negativity of oxygen atoms compared to hydrogen 
one, the negatively and positively charged sites will appear 
respectively for oxygen and hydrogen. Therefore, this 
charge difference cause to an electric dipole in the water 
molecule. Due to symmetric structure of water, dipole 
could present with a line started from oxygen and bisects of 
H-O-H angle [15-16]. In atomistic model of water with 
various point charge, dipole moment given by 
 

1

N

i
i idip q r


  (1)

 

    Where, N is the point charges number, qi and ri are 
charge and position vector of point charge i. Moreover, 
magnitude of  μdip is related to length of the dipole vector. 
So, respect to the considered reference direction (x in 
Figure 1), the orientation of water is characterized by dipole 
angle θdip. As mentioned before, there are many atomistic 
water models (AWMs). However, in the current paper, the 
most commonly used and interested AWMs are considered 
and described briefly as following. Generally, planar and 
tetrahedral physical structure is detectable for different 
AWMs.  

 

 
Type 1 (Simple Planar Model) 

Type 2 (Polarized Planar model) 

 
Type 3 (Polarized Tetrahedral model) 

Fig. 2. Schematic illustration of parameter used for different atomistic 
water models (AWMs).  

    The schematic of these different structures are illustrated 
in Figure 2. As indicated by Figure 2, type 1 and 2 are 
planar and type 3 has a tetrahedral structure. Moreover, it is 
notable that, type 1 is the simplest water model and types 2 
and 3 are polarized one. The reason of utilizing a 
polarizable water models is related to this fact that, water 
molecules in liquid state are all non-equivalent. In other 
words, due to their hydrogen bonding status, that affected 
by the arrangement of the neighbor water molecules, they 
are differing in their molecular orbital. Consequently, 
polarizable models (types 2 and 3 in Figure 2) are offered 
for better response to this phenomenon. However, in a 
simpler model (type 1 in Figure 2), formation of an 
'average' structure is expected. Finally, all different AWMs 
are classified in these three physical structures. Common 
and interested of the AWMs are SPC/E, TIP3P, TIP4P, 
TIP4PFQ and TIP5P.  SPC/E [17] is an extended simple 
point charge model that characterized by three point 
masses. In addition, TIP3P [18], TIP4P [19], TIP5P [20] are 
respectively, transferable intermolecular potential with 3, 4 
and 5 points. TIP4PFQ [21] is a transferable intermolecular 
potential with 4 points and fluctuating charge model. TIP5P 
has the negatively charged interaction sites are located 
symmetrically along the lone-pair directions. As shown in 
Figure 2, the SPC/E and TIP3P models are type 1. In 
addition, TIP4P and TIP4PFQ are type 2 and TIP5P is 
classified in type 3. Main physical characteristics (based on 
specified parameters in Figure 2) and Lennard-Jones 
parameters of considered AWMs are tabulated in Table.1. 
 

Table 1 
Main physical characteristics (based on specified parameters in 

Figure 2) and Lennard-Jones parameters of AWMs [15-21]. 
Physical 

Characteristic
SPC/E TIP3P TIP4P TIP5P IP4PFQ 

Type of 
AWM

1 1 2     3     2     

σ [ Å ] 3.166 3.15061 3.15365 3.12000 3.15365 

ε [kJ mol-1] 0.650 0.6364 0.6480 0.6694 0.6480 

LOH [ Å ] 1.0000 0.9572 0.9572 0.9572 0.9572 

LOD [ Å ] --- --- 0.15 0.70 0.15 

θ OHO [deg] 109.47 104.52 104.52 104.52 104.52 
φ HD [deg] --- --- 52.26 --- 52.26 
φ DOD 
[deg] 

--- --- --- 109.47 --- 

q1 [e] +0.4238 +0.4170 +0.5200 +0.2410
+0.63  
(Ave) 

q2 [e]  -0.8476 -0.8340 -1.0400 -0.2410 1.26 (Ave)
τ [Ps] 1.66674 1.67627 1.66280 1.61855 1.66280 

Velocity 
unit (σ/߬) [

Å /Ps] 

1.899 1.879 1.896 1.927 1.896 

Temperature 
unit (ε/kB) 

[k] 
78.844 77.194 78.601 81.197 78.601 
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    In Table 1, σ, ε,	߬ are respectively, atoms diameter 
(characteristics length scale), parameter that governs on the 
strength of interactions (characteristic potential energy) and 
time unit, which we use them in Lennard-Jones potential in 
the next section. 
   
Methods and Simulation Details 
Governing Equation  

As previously mentioned, MDS is performed for 
current study. The nature of this method is a Lagrangian 
based that locations of molecules is measurable in 
consecutively by using Newtonian’s equations of motion. 
For this purpose, at first the applied forces on each 
molecule are calculated.  

Second, their new location and velocities in a next time 
step will be obtained by combining with a current location 
and velocity of each molecule. This procedure will be 
repeated in each step. 

In deterministic scheme of MDS, molecule interacted 
together with intermolecular potential of  U.  We know the 
equation of motion for a molecule i without any moment of 
inertia and rotationally symmetrical is 
  

miai=Fi (2)
 
    where, Fi shows an overall force acts on the molecules by 
using 
 

, 1 , 1

w

w w

NN

exti ij ijw
j i j j i j

F F F F i
   

   


 (3)

 

    Here, i


shows a unit vector in flow direction. The first 
term in hand side of equation 3 represents an intermolecular 
force based on potentials between molecule i  and other 
fluid molecules in the computational domain. Also, second 
and third terms of equation 3 shows force between 
molecule i with all wall particles j and external force, 
respectively.  
    A single molecule will be affected by intermolecular 
potential energy functions of every molecule in the system 
including bonded and non-bonded neighbors. Hence, the 
affecting intermolecular potential on each water molecule is 
including bonded and non-bonded potentials. In the present 
study, non-bonded potential is considered [16]. 
Each non-bonded potential are formed from two potential 
parts: Van-der-waals and electrostatic. In the current paper, 
Lennard-Jones (LJ) 6-12 potential (as short-range 
repulsive/long-range attractive potential [14,22]) is 
implemented as the Van-der-waals potential. This potential 
is used for fluid-fluid and fluid-solid wall atoms (in 
fixed/frozen sate [23]) interactions. Moreover, to realistic 
modeling of water molecules, we employ electrostatic 
force, based on Coulomb`s law. Impression of the partial 
charges on the interaction sites respond to the electrostatic 

field of the molecules is the reason of adding electrostatic 
to our intermolecular potential. 
Simulation details 
    For MDS of different AWMs in nano-channel, non-
equilibrium and paralleled MD solver of mdFoam in Open 
source software of OpenFOAM is modified and performed. 
Based on other study in field of MDS [24-27], this solver 
has an appropriate capability in MDS. Also, to decrease of 
computational cost and better inference of readers from the 
computational results, as usual for MDS, reduced units are 
implemented. The defined quantities in reduced unite 
system is presented in Table 2. 
 

Table 2 
Defined quantities for MDS in reduced unit. 

Quantity Reduced Unit 
Diameter (Y*) Y/σ 
Energy (U*) E/ε 

Density (Rho*) ρσ3 
Velocity (v*) v/(σ/߬) 

Temperature (T*) T/(ε/kB) 
Time (t*) t /(m0.5σ/ε0.5) 
Force (F*) F/(ε/σ2) 

 
    According to reduced unit, the general form of 
dimensionless potential is  
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(4)

 
    Parameters in the equation 4 are described at 
Nomenclature. The first term of equation 4 is a force field 
that related to Lennard-Jones (LJ) 6-12 for non-bonded 
oxygen-oxygen potential. Second term is also associated 
with the electrostatic force based on Coulomb’s Law. Also, 
we set the value of 2.5 for dimensionless cutoff radius (r*

c) 
[22]. On the other hand, the platinum metal is used as a 
solid wall of a nano-channel. Lennard-Jones potential 
parameters for this metal are σPl =2.95[A°] and εPl =2.128 
[kJ mol-1] [28]. 
    It must be mentioned that, Face-Centered-Cubic (FCC) 
mesh structure is performed for all molecules’ arrangement 
in this paper. The reason of this selection is related to the 
real physical structure of liquid and solids in nature [29]. 
    Based on statistical thermodynamics, for initial velocity 
distribution in the equilibrium isolated system with fix 
temperature, Maxwell-Boltzmann is considered as 
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    Prediction of possibility of velocity of νiz for a molecule i 
with mass of (mi) at temperature of T is the interpretation of 
equation 5. The initial velocities set to such that the 
momentum of whole system is zero.  
    Schematic of computational domain is illustrated in 
Figure 3. 
 

Fig. 3. Schematic of the computational domain in MDS. In total 4817 
water molecules are placed between two solid atomistic walls each 

consisting of 878 platinum molecules in two layers. Poiseuille flow is 
generated by a body force Fb in the Z-direction 

 
    As observed in Figure 3, physical domain is extending 
-ௌ/ா in length (Z-direction). Also, height of nanoߪ32
channel in Y-direction is H=9.5ߪௌ/ா. 
    Additionally, as can be seen in Figure 3, to construct of 
nano-channel walls, double layers of platinum molecules 
are implemented. 
Also, to omission of unwanted wrap-around in 
computational domain, periodic boundary condition is used. 
This boundary condition (BC) with feature of infinite 
number of copies of system around of itself is a confirmed 
BC in MD modeling [30]. Consequently, we applied this 
BC in the direction of fluid flow (Z-Direction). 
    In order to apply the Poiseuille flow to our computational 
domain, water flow is driven by a constant external body 
force of Fext= Fb=2.27 e-9ε/σ2 on the all molecules along the 
Z-direction at P=1atm.  
    For sampling procedure, twenty independent equal 
segments (bins) are placed across the Y-direction. Then, 
stochastic averaging is applied on molecular dynamic data 
in each bin to extract of macroscopic properties of velocity 
profile and number density of water flow. Due to use of 
Berendsen thermostat, all simulations are done in the 
intended fixed temperature of T*=3.73. Moreover, the 
density number of simulations are considered as Rho*=ρσ3 

=0.998. 
    Paralleled code on a core I Eight CPUs with RAM of 
6GB is performed in this work. Also, Molecular dynamic 
equations are solved by time step of ∆t=6×10-4 ߬. This time 
interval (Δt), due to real-time of 6.4fs and 3.1fs for H-O-H 
bend and O-H stretch, is small enough to make sure 
numerical stability [10].  
    Real run time for each case is about 5×103 ߬ to simulate 
of 1ns of the problem until stability achievement including 
equilibrium process by NVT ensemble and Poiseuille flow 
simulation.  

    Continued, the results of velocity profile and density 
number for different AWMs are presented. 
Results and Discussion 
    Five different AWMs are employed for this simulation, 
for which the parameters can be found in Table 1. During 
the simulation, the velocity profile and density number 
values are collected throughout the bins. At the beginning 
of this section, computed velocity profiles of different 
AWMs under Poiseuille flow from MDS are compared with 
analytical solution. Then the density number is analyzed for 
various AWMs. 
 
Velocity profile of different AWMs vs. analytical 
solution 
 
    Lack of experimental study related to our work was 
observable from literature review. As a result, similar to 
other study [31-32], we use analytical solution for velocity 
profile of Poiseuille flow in nano-channel to compare it by 
different intended AWMs simulations. Therefore, following 
derivation is performed for extract of analytical velocity 
profile. 
    As indicated by Figure 3, consider a water fluid confined 
between two parallel plate at rest that located at y=±H/2 in 
orthogonal manner to Y-direction (Poiseuille flow [33]), 
where in addition of external force of F=Fext ̂ݖ, a pressure 
gradient ߲ݖ߲/ exist in Z-direction, then balance equation 
for momentum is 
 

1
. . F 0,P

t 


     

u

u u  (6)

 
    Here, u is flow velocity, ρ as density and p is a tensor of 
pressure. In this case, Navier-Stokes equation can be 
obtained as 
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    Here, μ and ξ are shear viscosity and bulk viscosity, 
respectively. 
    Due to this fact that, in Poiseuille flow, ߲ݐ߲/ݑ = 0 and 
u(r)=u(y)	̂ݖ, as a result, new form of Navier-Stokes equation 
for Poiseuille flow is  
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    Solution of above equation for no-slip boundary 
condition (zero velocity near the walls) now becomes 
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