تعداد نشریات | 26 |
تعداد شمارهها | 551 |
تعداد مقالات | 5,709 |
تعداد مشاهده مقاله | 7,969,805 |
تعداد دریافت فایل اصل مقاله | 5,352,915 |
ON THE COMPATIBILITY OF A CRISP RELATION WITH A FUZZY EQUIVALENCE RELATION | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 3، دوره 13، شماره 7، زمستان 2016، صفحه 15-31 اصل مقاله (335.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2941 | ||
نویسندگان | ||
B. De Baets* 1؛ H. Bouremel2؛ L. Zedam2 | ||
1KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, B-9000, Gent, Belgium | ||
2Department of Mathematics, Faculty of Mathematics and Informatics, Med Boudiaf University of Msila, P.O. Box 166 Ichbilia, Msila 28000, Algeria | ||
چکیده | ||
In a recent paper, De Baets et al. have characterized the fuzzy tolerance and fuzzy equivalence relations that a given strict order relation is compatible with. In this paper, we generalize this characterization by considering an arbitrary (crisp) relation instead of a strict order relation, while paying attention to the particular cases of a reflexive or irreflexive relation. The reasoning largely draws upon the notion of the clone relation of a (crisp) relation, introduced recently by Bouremel et al., and the partition of this clone relation in terms of three different types of pairs of clones. More specifically, reflexive related clones and irreflexive unrelated clones turn out to play a key role in the characterization of the fuzzy tolerance and fuzzy equivalence relations that a given (crisp) relation is compatible with. | ||
کلیدواژهها | ||
Crisp relation؛ Fuzzy relation؛ Clone relation؛ Compatibility؛ Tolerance relation؛ Equivalence relation | ||
مراجع | ||
[1] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic Publishers/Plenum Publishers, New York, 2002. [2] R. Belohlavek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128(1-3) (2004), 277-298. [3] U. Bodenhofer, A new approach to fuzzy orderings, Tatra Mt Math Publ, 16(1) (1999), 1-9. [4] U. Bodenhofer, Representations and constructions of similarity-based fuzzy orderings, Fuzzy Sets and Systems, 137(1) (2003), 113-136. [5] U. Bodenhofer and M. Demirci, Strict fuzzy orderings in a similarity-based setting, Proc. of EUSFLAT-LFA 2005, Barcelona, Spain, (2005), 297-302. [6] U. Bodenhofer, B. De Baets and J. Fodor, A compendium of fuzzy weak orders: Representa- tions and constructions, Fuzzy Sets and Systems, 158(8) (2007), 811-829. [7] H. Bouremel, R. Perez-Fernandez, L. Zedam and B. De Baets, The clone relation of a binary relation, Information Sciences, doi: 10.1016/j.ins.2016.12.008, accepted. [8] A. Burusco and R. Fuentes-Gonzales, The study of the L-fuzzy concept lattice, Mathware and Soft Computing, 3 (1994), 209-218. [9] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Second ed., Cambridge University Press, Cambridge, 2002. [10] B. De Baets and R. Mesiar, Triangular norms on product lattices, Fuzzy Sets and Systems, 104(1) (1999), 61-75. [11] B. De Baets, L. Zedam and A. Kheniche, A clone-based representation of the fuzzy tolerance or equivalence relations a strict order relation is compatible with, Fuzzy Sets and Systems, 296 (2016), 35-50. [12] M. Demirci, Foundations of fuzzy functions and vague algebra based on many-valued equiva- lence relations, Part I: fuzzy functions and their applications, Internat. J. General Systems, 32(2) (2003), 123-155. [13] M. Demirci, A theory of vague lattices based on many-valued equivalence relations|I: general representation results, Fuzzy Sets and Systems, 151(3) (2005), 437-472. [14] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18(1) (1967), 145-174. [15] U. Hohle and N. Blanchard, Partial ordering in L-underdeterminate sets, Information Sciences, 35(2) (1985), 133-144. [16] A. Kheniche, B. De Baets and L. Zedam, Compatibility of fuzzy relations, International Journal of Intelligent Systems, 31(3) (2015), 240-256. [17] P. Martinek, Completely lattice L-ordered sets with and without L-equality, Fuzzy Sets and Systems, 166(1) (2011), 44-55. [18] I. Perlieva, Normal forms in BL-algebra and their contribution to universal approximation of functions, Fuzzy Sets and Systems, 143(1) (2004), 111-127. [19] I. Perlieva, Fuzzy function: theoretical and practical point of view, Proc. EUSFLAT 2011, Aix-les-Bains, France, (2011), 480-486. [20] I. Perlieva, D. Dubois, H. Prade, F. Esteva, L. Godo and P. Hoddakova, Interpolation of fuzzy data: Analytical approach and overview, Fuzzy Sets and Systems, 192 (2012), 134-158. [21] B. S. Schroder, Ordered Sets, Birkhauser, Boston, 2002. [22] H. L. Skala, Trellis theory, Algebra Universalis, 1 (1971), 218-233. [23] K. Wang and B. Zhao, Join-completions of L-ordered sets, Fuzzy Sets and Systems, 199 (2012), 92-107. [24] L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3(2) (1971), 177-200. [25] Q. Zhang, W. Xie and L. Fan, Fuzzy complete lattices, Fuzzy Sets and Systems, 160(16) (2009), 2275-2291. | ||
آمار تعداد مشاهده مقاله: 901 تعداد دریافت فایل اصل مقاله: 1,753 |