تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,698 |
تعداد مشاهده مقاله | 7,964,358 |
تعداد دریافت فایل اصل مقاله | 5,347,889 |
SOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 13، شماره 7، زمستان 2016، صفحه 91-100 اصل مقاله (350.52 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2945 | ||
نویسندگان | ||
F. Kouchakinejad* 1؛ M. Mashinchi2؛ R. Mesiar3 | ||
1Department of Mathematics, Graduate University of Advanced Technology, Kerman, Iran | ||
2Department of Statistics, Faculty of Mathematics and Computer Sciences, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Radlinskeho 11, 810 05 Bratislava, Slovak Republic | ||
چکیده | ||
Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A \circ^{F}\textbf{x}\leq\textbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } \circ^{F}\textbf{x}\leq\textbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the possible perturbations $ b^{'} $ of the right-hand side vector $ b $ not modifying the original solution set are determined. Several illustrative examples are included to clarify the results of the paper. | ||
کلیدواژهها | ||
aggregation function؛ Max-aggregation function composition؛ Solution-set invariant matrices؛ Solution-set invariant vectors؛ System of fuzzy relation inequalities | ||
مراجع | ||
[1] M. Baczynski and B. Jayaram, Fuzzy implications, Studies in Fuzziness and Soft Computing, 2008. [2] G. Beliakov, A. Pradera and T. Calvo, Aggregation functions: A guide for practitioners, Springer, Berlin: Heidelberg, 2007. [3] J. Drewniak and Z. Matusiewicz, Properties of max-fuzzy relation equations, Soft Computing, 14 (2010), 1037-1041. [4] F. Durante, J. J. Quesada-Molina and C. Sempi, Semicopulas: characterizations and appli- cability, Kybernetika, 42 (2006), 287-302. [5] M. J. Fernandez and P. Gil, Some specific types of fuzzy relation equations, Inform. Science, 164 (2004), 189-195. [6] M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap, Aggregation functions, Cambridge: Cam- bridge University press, 2009. [7] E. P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer, Dordrecht, 2000. [8] K. Peeva and Y. Kyosev, Fuzzy relational calculus - theory, applications and software, Ad- vances in Fuzzy Systems-Applications and Theory, World Scientific, 2005. [9] E. Sanchez, Resolution of composite fuzzy relation equations, Inform. and Control, 30 (1976), 38-48. [10] B. S. Shieh, Solutions of fuzzy relation equations based on continuous T-norms, Inform. Science, 177 (2007), 4208-4215. [11] G. B. Stamou and S. G. Tzafestas, Resolution of composite fuzzy relation equations based on archimedean triangular norms, Fuzzy Set. Syst., 120 (2001), 395-407. [12] H. F. Wang and H. M. Hsu, Sensitivity analysis of fuzzy relation equations, Int. J. Gen. Syst., 19 (1991), 155-169. | ||
آمار تعداد مشاهده مقاله: 751 تعداد دریافت فایل اصل مقاله: 729 |