تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,158 |
تعداد مشاهده مقاله | 9,090,340 |
تعداد دریافت فایل اصل مقاله | 5,933,016 |
FLUENCE MAP OPTIMIZATION IN INTENSITY MODULATED RADIATION THERAPY FOR FUZZY TARGET DOSE | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 8، شماره 4، دی 2011، صفحه 93-105 اصل مقاله (1.01 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2011.310 | ||
نویسندگان | ||
Alireza Fakharzadeh Jahromi ![]() | ||
1Shiraz University of Technology, Shiraz, Fars, Iran | ||
2Shiraz University of Medical Sciences, Shiraz, Fars, | ||
چکیده | ||
Although many methods exist for intensity modulated radiotherapy (IMRT) fluence map optimization for crisp data, based on clinical practice, some of the involved parameters are fuzzy. In this paper, the best fluence maps for an IMRT procedure were identifed as a solution of an optimization problem with a quadratic objective function, where the prescribed target dose vector was fuzzy. First, a defuzzying procedure was introduced to change the fuzzy model of the problem into an equivalent non-fuzzy one. Since the solution set was nonconvex, the optimal solution was then obtained by performing a projection operation in applying the gradient method. Numerical simulations for two typical clinical cases (for prostate and head-and-neck cancers, each for two patients) are given. | ||
کلیدواژهها | ||
IMRT؛ Singed distance؛ Triangular fuzzy number؛ Gradient method | ||
مراجع | ||
\bibitem{2} G. Bahr, J. Kereiakes, H. Horwitz, R. Finnery, J. Calvin and K. Goode, {\it The method of linear programming applied to radiation treatment planning}, Radiology, {\bf 91} (1968), 686-693. \bibitem{salmani ref1} J. Chiang, {\it Fuzzy linear programming based on statistical confidence interval and interval-valued fuzzy set}, European Journal of Operational Research, {\bf 129} (2001), 65-86. \bibitem{8} C. Cotrutz, M. Lahanas, C. Kappas and D. Baltas, {\it A multiobjective gradient based dose optimization algorithm for external beam conformal radiotherapy}, Physics in Medicine and Biology, {\bf 46} (2001), 2161-2175. \bibitem{CERR} J. Deasy, A. Blanco and V. Clark, {\it Cerr: a computational environment for radiotherapy research}, Medical Physics, {\bf 30} (2003), 979-985.
\bibitem{Dubois} D. Dubois and H. Prade, {\it Fuzzy sets and systems: theory and application}, Academic Press, New York, 1980. \bibitem{Hamacher} H. W. Hamacher and K. H. Kufer, {\it Inverse radiation therapy planninng - a multiple objective optimization approach}, Discrete Applied Mathematics, {\bf 118} (2002), 145-161. \bibitem{15} C. L. Lawson and R. J. Hanson, {\it Solving least squares problems}, SIAM, (1995), 160-165.
\bibitem{mixed integer} E. Lee, T. Fox and I. Crocker, {\it Integer programming applied to intensity modulated radiation therapy treatment planning}, Annals of Operations Research, {\bf 119} (2003), 165-181. \bibitem{IMRT1} M. S. Merritt, {\it A sensitivity-driven greedy approach to fluence map optimization in intensity-modulated radiation therapy}, Ph. D. thesis, Department of Computational and Applied Mathematics, Rice University, April 2006. \bibitem{26} S. Morrill, R. Lane, J. Wong and I. Rosen, {\it Dose-volume considerations with linear programming optimization}, Medical Physics, {\bf 18} (1991), 1201-1210. \bibitem{Preciado} F. Preciado-Walters, M. Langer, R. Rardin and V. Thai, {\it A coupled column generation, mixed-integer approach to optimal planning of intensity modulated therapy for cancer}, Mathematical Programming, {\bf 101} (2004), 319-338. \bibitem{Romeijn} H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, A. Kumar and G. J. Li, {\it Novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning}, Physics in Medicine and Biology, {\bf 48} (2003), 3521-3542. \bibitem{30} H. E. Romeijn, J. F. Dempsey and J. G. Li, {\it A unifying framework for multi criteria fluence map optimization models}, Physics in Medicine and Biology, {\bf 49} (2004), 1991-2013. \bibitem{34} S. V. Spirou and C. Chui, {\it A gradient inverse planning algorithm with dose-volume constraints}, Medical Physics, {\bf 25} (1998), 321-333.
\bibitem{Yao wu} J. Yao and K. Wu, {\it Ranking fuzzy numbers based on decomposition principle and signed distance}, Fuzzy Sets and Systems, {\bf 116} (2000), 275-288. \bibitem{Yin Zhang} Y. Zhang and M. Merrit, {\it Dose-volume-based IMRT fluence optimization: a fast leastsquares approach with differentiability}, Linear Algebra and its Applications, {\bf 428} (2008), 1365-1387. \bibitem{zimerman} H. J. Zimmermann, {\it Fuzzy set theory and its applications}, second ed., Kluwer Academic Publishers, Boston, 1991. | ||
آمار تعداد مشاهده مقاله: 2,754 تعداد دریافت فایل اصل مقاله: 1,841 |