تعداد نشریات | 27 |
تعداد شمارهها | 565 |
تعداد مقالات | 5,815 |
تعداد مشاهده مقاله | 8,126,741 |
تعداد دریافت فایل اصل مقاله | 5,442,738 |
THE p-CENTER PROBLEM ON FUZZY NETWORKS AND REDUCTION OF COST | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 5، شماره 1، اردیبهشت 2008، صفحه 1-26 اصل مقاله (298.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2008.313 | ||
نویسندگان | ||
Sk. Md. Abu Nayeem1؛ Madhumangal Pal ![]() | ||
1Department of Mathematics, Jhargram Raj College, Jhargram, West Bengal, 721 507, India | ||
2Madhumangal Pal, Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore, West Bengal, 721 102, India | ||
چکیده | ||
Here we consider the p-center problem on different types of fuzzy networks. In particular, we are interested in the networks with interval and triangular fuzzy arc lengths and vertex-weights. A methodology to obtain the best satisfaction level of the decision maker who wishes to reduce the cost within the tolerance limits is proposed. Illustrative examples are provided. | ||
کلیدواژهها | ||
Fuzzy sets؛ location؛ Networks | ||
مراجع | ||
[1] A. Al-khedhairi and S. Salhi,Enhancement to two exact algorithms for solving the vertex p-center problem, Journal of Mathematical Modelling and Algorithms, 4(2) (2005), 129-147. [2] D. Bespamyatnikh, B. Bhattacharya, M. Keil, D. Kirkpatric and D. Segal,Efficient algorithms for centers and medians in interval and circular-arc graphs, Networks, 39 (1979),144-152. [3] M. J. Can´os, C. Ivorra and V. Liern,An exact algorithm for the fuzzy p-median problem, European Journal of Operational Research,116 (1999), 80-86. [4] M. J. Can´os, C. Ivorra and V. Liern,The fuzzy p-median problem : a global analysis of the solutions, European Journal of Operational Research, 130 (2001), 430-436. [5] S. Chanas, M. Delgado, J. L. Verdegay and M. A. Vila,Fuzzy optimal flow on a imprecise structures, European Journal of Operational Research, 83 (1995), 568-580. [6] S. Chanas and W. Kolodziejczyk,Maximum flow in a network with fuzzy arc capacities, Fuzzy Sets and Systems,8 (1982), 165-173. [7] S. Chanas and W. Kolodziejczyk,Real valued flows in a network with fuzzy arc capacities, Fuzzy Sets and Systems,13 (1984), 139-151. [8] P. -T. Chang and E. S. Lee,Ranking fuzzy sets based on the concept of existence, Computers and Mathematics with Applications,27 (1994), 1-21. [9] P. -T. Chang and E. S. Lee,Fuzzy decision networks and deconvolution, Computers and Mathematics with Applications,37 (1999), 53-63. [10] R. Chandrasekharan and A. Tamir,Polynomial bounded algorithms for locating p-centers on a tree, Mathematics in Programming, 22 (1982), 304-315. [11] M. Daskin,Network and discrete location, Wiley, NewYork, 1995.
[12] M. Delgado, J. L. Verdegay and M. A. Vila,On fuzzy tree definition, European Journal of Operational Research,22 (1985), 243-249. [13] M. Delgado, J. L. Verdegay and M. A. Vila,A procedure for ranking fuzzy numbers using fuzzy relations, Fuzzy Sets and Systems, 26 (1988), 49-62. [14] M. Delgado, J. L. Verdegay and M. A. Vila,On valuation and problems in fuzzy graphs : a general approach and some particular cases, ORSA Journal on Computing, 2 (1990), 74-84. [15] H. Y. Handler and P. B. Mirchandani,Location on networks : theory and algorithms, MIT Press, Cambridge, MA, 1979.
[16] F. Herrera and J. L. Verdegay,Three models of fuzzy integer linear programming, European Journal of Operational Research,83 (1995), 581-593. [17] O. Kariv and S. L. Hakimi,An algorithmic approach to network location problems, I: the p-centers, SIAM Journal of Applied Mathematics, 37 (1979), 513-538. [18] A. Kaufmann and M. M. Gupta,Introduction to fuzzy arithmetic : theory and applications, Van Nostrand Reinhold, New York, 1985.
[19] P. B. Mirchandani and R. L. Francis,Discrete location theory, Wiley, New York, 1990. [20] N. Mledanovic, M. Labb´e and P. Hansen,Solving the p-center problem with tabu search and variable neighborhood search, Networks, 42(1) (2003), 48-64. [21] R. E. Moore,Method and application of interval analysis, SIAM, Philadelphia, 1979. [22] J. N. Mordeson and P. S. Nair,Fuzzy graphs and fuzzy hypergraphs, Studies in fuzzyness and soft computing, Physica-Verlag, Wurzburg, 2000. [23] J. A. Moreno P´erez, J. M. Moreno Vega and J. L. Verdegay,Fuzzy location problems on networks, Fuzzy Sets and Systems, 142 (2004), 393-405. [24] S. M. A. Nayeem and M. Pal,Genetic algorithm to solve p-center and p-radius problem on a network, International Journal of Computer Mathematics, 82 (2005), 541-550. [25] S. M. A. Nayeem and M. Pal,Shortest path problem on a network with imprecise edge weight, Fuzzy Optimization and Decision Making,4 (2005), 293-312. [26] S. M. A. Nayeem and M. Pal,PERT on a network with imprecise edge weight, communicated. [27] S. Okada and T. Soper,A shortest path problem on a network with fuzzy arc lengths, Fuzzy Sets and Systems,109 (2000), 129-140. [28] F. A. ¨Ozsoy and MC¸ . Pinar,An exact algorithm for the capacitated vertex p-center problem, Computers and Operations Research,33(5) (2006), 1420-1436. [29] A. Rosenfeld,Fuzzy graph, In: L. A. Zadeh, K. S. Fu, K. Tanaka and M. Shimura Eds., Fuzzy sets and their application to cognitive and decision processes, Academic Press, New York, (1975), 79-97.
[30] A. Sengupta, T. K. Pal,On comparing interval numbers, European Journal of Operational Research, 127 (2000), 28-43. [31] J. K. Sengupta,Optimal decision under uncertainty, Springer, New York, 1981. [32] A. Tamir,Improved complexity bounds for center location problems on networks by using dynamic data structures, SIAM Journal of Discrete Mathematics, 1 (1988), 377-396. [33] L. A. Zadeh,Fuzzy sets, Information and Control, 8 (1965), 338-353. | ||
آمار تعداد مشاهده مقاله: 2,376 تعداد دریافت فایل اصل مقاله: 1,116 |