تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,821 |
تعداد مشاهده مقاله | 8,155,752 |
تعداد دریافت فایل اصل مقاله | 5,456,069 |
FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 14، شماره 2، تیر 2017، صفحه 107-126 اصل مقاله (431.81 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2017.3136 | ||
نویسندگان | ||
Hoang Viet Long* 1؛ Nguyen Thi Kim Son2؛ Ngo Van Hoa3 | ||
1Division of Computational Mathematics and Engineering, Insti- tute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam | ||
2Department of Mathematics, Hanoi University of Education, Vietnam | ||
3Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam | ||
چکیده | ||
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results. | ||
کلیدواژهها | ||
Fractional PDEs؛ Caputo gH-derivatives؛ Fuzzy weak solutions؛ Weakly contractive mapping؛ Partially ordered space | ||
مراجع | ||
[1] S. Abbas, M. Benchohra and G. M. N'Guerekata, Topics in fractional DEs, Springer, Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo, 2012. [2] R. Alikhani and F. Bahrami, Global solutions of fuzzy integro-dierential equations under generalized dierentiability by the method of upper and lower solutions, Inf. Sci., 295 (2015), 600-608. [3] T. Allahviranloo, Z. Gouyandeh and A. Armand, Fuzzy fractional dierential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26 (2014), 1481-1490. [4] T. Allahviranloo, Z. Gouyandeh, A. Armand and A. Hasanoglu, On fuzzy solutions for heat equation based on generalized Hukuhara dierentiability, Fuzzy Sets Syst., 265 (2015), 1-23. [5] B. Bede and L. Stefanini, Generalized dierentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119-141. [6] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geo- physical J. Int., 13 (1967), 529-539. [7] J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary dierential equations, Nonlinear Anal. (TMA), 72 (2010), 1188- 1197. [8] N. V. Hoa, Fuzzy fractional functional dierential equations under Caputo gH- dierentiability, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1134-1157. [9] N. V. Hoa, Fuzzy fractional functional integral and dierential equations, Fuzzy Sets Syst., 280 (2015), 58-90. [10] A. Khastan, J. J. Nieto and R. Rodrguez-Lopez, Schauder xed-point theorem in semilinear spaces and its application to fractional dierential equations with uncertainty, Fixed Point Theory Appl., 2014 (2014): 21. [11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional dierential equations, Elsevier Science B.V, Amsterdam, 2006. [12] H. V. Long, N. T. K. Son, N. T. M. Ha and L. H. Son, The existence and uniqueness of fuzzy solutions for hyperbolic partial dierential equations, Fuzzy Optim. Decis. Mak., 13 (2014), 435-462. [13] H. V. Long, N. T. K. Son and H. T. T. Tam, Global existence of solutions to fuzzy partial hyperbolic functional dierential equations with generalized Hukuhara derivatives, J. Intell. Fuzzy Syst., 29 (2015), 939-954. [14] H. V. Long, N. T. K. Son and H. T. T. Tam, The solvability of fuzzy fractional partial dierential equations under Caputo gH-dierentiability, Fuzzy Sets Syst., 309 (2017), 35-63. [15] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 63-85. [16] M. T. Malinowski, Random fuzzy fractional integral equations - Theoretical foundations, Fuzzy Sets Syst., 265 (2015) 39-62. [17] J. J. Nieto and R. Rodrguez-Lopez, Applications of contractive-like mapping principles to fuzzy equations, Revista Matematica Complutense, 19 (2006), 361-383. [18] E. J. Villamizar-Roa, V. Angulo-Castillo and Y. Chalco-Cano, Existence of solutions to fuzzy dierential equations with generalized Hukuhara derivative via contractive-like mapping prin- ciples, Fuzzy Sets Syst., 265 (2015), 24-38. [19] H. Vu and N. V. Hoa, On impulsive fuzzy functional dierential equations, Iranian Journal of Fuzzy Systems, 13(4) (2016), 79-94. | ||
آمار تعداد مشاهده مقاله: 2,704 تعداد دریافت فایل اصل مقاله: 1,411 |