تعداد نشریات | 27 |
تعداد شمارهها | 557 |
تعداد مقالات | 5,770 |
تعداد مشاهده مقاله | 8,025,676 |
تعداد دریافت فایل اصل مقاله | 5,394,447 |
FORMAL BALLS IN FUZZY PARTIAL METRIC SPACES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 14، شماره 2، تیر 2017، صفحه 155-164 اصل مقاله (352.34 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2017.3138 | ||
نویسندگان | ||
Jiyu Wu ![]() | ||
Department of Mathematics, Ocean University of China, 238 Songling Road, 266100, Qingdao, P.R.China | ||
چکیده | ||
In this paper, the poset $BX$ of formal balls is studied in fuzzy partial metric space $(X,p,*)$. We introduce the notion of layered complete fuzzy partial metric space and get that the poset $BX$ of formal balls is a dcpo if and only if $(X,p,*)$ is layered complete fuzzy partial metric space. | ||
کلیدواژهها | ||
Fuzzy partial metric؛ Formal ball؛ $mathcal{Q}$-category؛ Domain | ||
مراجع | ||
[1] M. Ali-Akbari, B. Honari, M. Poourmahdlan and M. M. Rezall, The space of formal balls and models of quasi-metric space, Math. Struct. in Comp. Science, 19 (2009), 337{355. [2] A. Edalat and Reinhold Heckmann, A computationl model for metric space, Theoretical Computer Science, 193 (1998), 53{73. [3] D. Hofmann and C. D. Reis, Probabilistic metric spaces as enriched categories, Fuzzy Sets and Systems, 210 (2013), 1{21. [4] U. Hohle and T. Kubiak, A non-commutative and non-idempotent theory of quantale sets, Fuzzy Sets and Systems, 166 (2011), 1{43. [5] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11(5) (1975), 336{344. [6] F. W. Lawvere, Metric spaces, generalized logic, and closed categories, Milan Journal of Mathematics, 43 (1973), 135{166. [7] S. Matthews, Partial Metric Topology, Annals New York Academy of sciences, 28 (1994), 183{197. [8] L. Ricarte, Topological and computational models for fuzzy metric space via domain theory, PhD thesis, Department of applied mathematics, universitat politencia de valencia, valencia 2013, 1{22. [9] L. Ricarte and S. Romaguera, A domain theoretic approach to fuzzy metric space, Topology and its Applications, 163 (2014), 149{159. [10] S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric complete- ness in terms of formal balls, Math. Struct. in Comp. Science, 20 (2010), 453{472. [11] S. Romaguera and O. Valero, A quantitative computational model for complete partial met- ricspace via formal balls, Math. Struct. in Comp. Science, 19 (2009), 541{563. [12] K. I. Rosenthal, The theory of quantaloids, Volume 348 of Pitman Research Notes in Math- ematics Series. Longman, Harlow, (1996), 21{77. [13] J. Rutten, Weighted colimits and formal balls in generalized metric spaces, Topology and its Applications, 89 (1998), 179{202. [14] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, New York, (1983), 22{85. [15] L. Shen, Adjunctions in quantaloid-enriched categories, Ph. D Thesis, Sichuan University, 2014. (arXiv:1408. 0321) [16] I. Stubbe, An introduction to quantaloid-enriched categories, Fuzzy Sets and Systems, 256 (2014), 95{116. [17] Y. Yue, Separated 4+-valued equivalences as probabilistic partial metric spaces, Journal of Intelligent & Fuzzy Systems, 28 (2015) 2715{2724. [18] H. Zhao, A note on the poset of formal balls of a metric space, Journal of Sichuan University, 47 (2010), 31{34. | ||
آمار تعداد مشاهده مقاله: 801 تعداد دریافت فایل اصل مقاله: 999 |