تعداد نشریات | 31 |
تعداد شمارهها | 712 |
تعداد مقالات | 6,935 |
تعداد مشاهده مقاله | 11,408,786 |
تعداد دریافت فایل اصل مقاله | 7,787,251 |
TIME-VARYING FUZZY SETS BASED ON A GAUSSIAN MEMBERSHIP FUNCTIONS FOR DEVELOPING FUZZY CONTROLLER | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 3، دوره 14، شماره 3، شهریور 2017، صفحه 15-39 اصل مقاله (1.58 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2017.3241 | ||
نویسنده | ||
Salim Ziani* | ||
Department of Electronics, Laboratory of Automatic and Robotics LARC, University of Mentouri brother's Constantine, Route Ain ElBey, 25000, Constantine , Algeria | ||
چکیده | ||
The paper presents a novel type of fuzzy sets, called time-Varying Fuzzy Sets (VFS). These fuzzy sets are based on the Gaussian membership functions, they are depended on the error and they are characterized by the displacement of the kernels to both right and left side of the universe of discourse, the two extremes kernels of the universe are fixed for all time. In this work we focus only on the midpoint movement of the universe, all points of supports (kernels) are shifted by the same distance and in the same direction excepted the two extremes points of supports are always fixed for all computation time. To show the effectiveness of this approach we used these VFS to develop a PDC (Parallel Distributed Compensation) fuzzy controller for a nonlinear and certain system in continuous time described by the T-S fuzzy model, the parameters of the functions defining the midpoint movements are optimized by a PSO (Particle Swarm Optimization) approach. | ||
کلیدواژهها | ||
Fuzzy sets؛ Fuzzy System؛ Gaussian Membership function؛ PDC fuzzy controller؛ PSO method؛ TS model and stability؛ LMI | ||
مراجع | ||
[1] A. Baratella Lugli, E. Raimundo Neto, J. Paulo C. Henriques, M. Daniela Arambulo Her- vas, M. Mauro Dias Santos and J. Francisco Justo, Industrial application control with fuzzy systems, International Journal of Innovative Computing, Information and Control (IJICIC), 12(2) (2016), 665{676. [2] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in systems and control theory ,SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, (1994), 7{35. [3] O. Castillo, N. Cazarez, D. Rico and L. T. Aguilar, Intelligent control of dynamic systems using type2 fuzzy logic and stability issues , International Mathematical Forum, 1(28) (2006), 1371{1382. [4] S. Chopra, R. Mitra and V. Kumar, Reduction of fuzzy rules and membership functions and its application to fuzzy pi and pd type controllers, International Journal of Control, Automation and Systems, 4(2) (2006), 438{447. [5] Z. Daqing, Z. Qingling and Z. Yan, Stabilization of T-S fuzzy systems: an SOS approach, International Journal of Innovative Computing, Information and Control, 4(9) (2008), 2273{ 2283. [6] J. Dong and G. H. Yang, Static output feedback control synthesis for discrete-time T-S fuzzy systems, static output feedback control synthesis for discrete-time T-S fuzzy systems, Inter- national Journal of Control, Automation, and Systems, 5(3) (2007), 349-354. [7] C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong and C. H. Lee, A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems, IEEE Trans. on Fuzzy Sysems, 14(3) (2006), 386{397. [8] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI control toolbox, The Math Works, Natick, MA, 1 (1995), 175{356. [9] Z. L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Trans. Energy Conv., 9(2) (2004), 384{391. [10] M.R. Ghazali, Z. Ibrahim, M. Helmi Suid, M. Salihin Saealal and M. Zaidi Mohd Tumari, Single input fuzzy logic controller for exible joint manipulator, International Journal of Innovative Computing, Information and Control (IJICIC), 12(1) (2016), 181{191. [11] S. J. Huang and W. C. Lin, A self-organizing fuzzy controller for an active suspension system, Journal of Vibration and Control, 9 (2003), 1023{1040. [12] S. J. Huang and J. S. Lee, Stable self-organizing fuzzy controller for robotic motion control, IEEE Transactions on Industrial Electronics, 47(2) (2000), 421{428. [13] S. Jafarzadeh and al., Stability analysis and control of discrete Type-1 and Type-2 TSK fuzzy systems: Part II. control design, IEEE Transactions on fuzzy systems, 19(6) (2011), 989{1000. [14] S. Kaitwanidvilai, P. Olranthichachart and I. Ngamroo, PSO based automatic weight selec- tion and xed structure robust loop shaping control for power system control applications, International Journal of Innovative Computing, Information and Control, 7(4) (2011), 1549{ 1563. [15] J. Kennedy and R. Eberhart, Particle swarm optimization, from Proc. IEEE Int. Conf. on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, (1995), 1942{1948. [16] D. W. Kim, J. B. Park, Y. H. Joo and S. H. Kim, Multirate digital control for fuzzy systems LMI-based design and stability analysis, International Journal of Control, Automation, and Systems, 4(4) (2006), 506{515. [17] H. K. Lam, F. H. F. Leung and P. K. S. Tam, A Linear matrix inequality approach for the control of uncertain fuzzy systems, IEEE Control Systems Magazine, 22(4) (2002), 20{25. [18] Y. Li, S. Sui and S. Tong, Adaptive fuzzy control design for stochastic nonlinear switched sys- tems with arbitrary switchings and unmodeled dynamics, IEEE Transactions on Cybernetics, (99) (2016), 1{12. [19] Y. Li, S. Tong and T. Li, Adaptive fuzzy output feedback dynamic surface control of intercon- nected nonlinear pure-feedback systems, IEEE Transactions on Cybernetics, 45(1) (2015), 138{149. [20] J. Li, H. O. Wang, D. Niemann and K. Tanaka, Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: An LMI approach, Information Sciences, 123(3-4) (2000), 201{221. [21] R. I. Lian, B. F. Lin and W. T. Sie, Self-organizing fuzzy control of active suspension systems, International Journal of Systems Science, 36(3) (2005), 119{135. [22] D. Maravall, C. Zhou and J. Alonso, Hybrid fuzzy control of the inverted pendulum via vertical forces, International journal of intelligent systems, 20 (2005), 195{211. [23] M. Margaliot and G. Langholz, New approaches to fuzzy modeling and control:design and analysis, World scientic, Singapore, 11(4) (2000), 486{494. [24] J. M. Mendel, L. Fellow, Robert I. John and Feilong Liu., Interval type-2 fuzzy systems made simple, IEEE transactions on fuzzy systems, 14(6) (2006), 808{821. [25] D. Niemann, J. Li, H. O. Wang and K. Tanaka, Parallel distributed compensation for Takagi- Sugeno fuzzy models: New stability conditions and dynamic feedback designs, Proceeding of 14th World Congress of IFAC, (1999), 207{212. [26] Y. M. Park, U. C. Moon and K. Y. Lee, A self-organizing fuzzy logic for dynamic system using fuzzy auto-regressive moving average (FARMA) model, IEEE Transaction on fuzzy system, 3(1) (1995), 75{82. [27] P. A. Phan and T. J. Gale, Direct adaptive fuzzy control with a self structuring algorithm, Fuzzy Sets Systems, 159(8) (2008), 871{899. [28] M. Sugeno and G. T. Nishida, Fuzzy control of model car, Fuzzy Sets and Systems, 16(1) (1985), 103{113. [29] M. Sugeno, Industrial applications of fuzzy control, Elsevier Science Pub. Co., New York, (1985), 249{269. [30] T. Takagi and M. Sugeno, Fuzzy identication of systems and its application to modeling and control, IEEE Trans. on Syst. Man and Cybernetics, 15 (1985), 116{132. [31] K. Tanaka, T. Ikeda and H. O. Wang. , Design of fuzzy control systems based on relaxed LMI stability conditions, 35th IEEE Conference on Decision and Control, 1 (1996), 598{603. [32] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis : A linear matrix inequality approach, Hoboken, NJ: Wiley, 1 (2001), 06{81. [33] K. Tanaka and M. Sano, Fuzzy stability criterion of a class nonlinear systems, Inform. SC., 71(2) (1993), 3{26. [34] T. Tanaka, T. Ikeda and H. O. Wang, An LMI approach to fuzzy controller designs based on relaxed stability Conditions, Proc. of the IEEE Conf. on Fuzzy Systems, (1997), 171{176. [35] K. Tanaka, T. Taniguchi and H. O. Wang, Model-based fuzzy control of TORA system: fuzzy regulator and fuzzy observer design via LMIs that represent decay rate, disturbance rejection, robustness, optimality, Seventh IEEE International Conference on Fuzzy Systems, (1998), 313{318. [36] K. Tanaka, T. Ikeda and H. O. Wang, Robust stabilization of a class of uncertain nonlinear systems Via fuzzy control: quadratic stabilizability, control theory and linear matrix inequal- ities, IEEE Trans. on Fuzzy Systems, 4(1) (1996), 1{13. [37] C. W. Ting and C. Quek., A novel blood glucose regulation using TSKFCMAC: A fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme, IEEE Trans. Neural Netw., 20(5) (2009), 856{871. [38] H. D. Tuan, P. Apkarian, T. Narikiyo and M. Kanota, New fuzzy control model and dynamic output feedback parallel distributed compensation, IEEE Trans. on Fuzzy Systems, 12(1) (2004), 13{21. [39] H. O. Wang, K. Tanaka and M. F. Grin, An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Transaction on fuzzy systems, 4(1) (1996), 14{23. [40] D. Wu and J. M. Mendel, Enhanced KarnikMendel algorithms, IEEE Transactions on fuzzy systems,17(4) (2009). [41] L. A. Zadeh, The concept of linguistic variable and its application for approximate reasoning, Information Sciences, 8(3) (1975), 199{249. [42] L. A. Zadeh, Fuzzy sets, Information Control, 8 (1965), 335{353. [43] S. Ziani and S. Filali, Time-varying fuzzy sets in adaptive control, 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA'2013), 1 (2013), 6{13. [44] S. Ziani, S. Filali and Yunfu Huo, A time-varying fuzzy sets as functions of the error, Interna- tional Journal of Innovative Computing, Information and Control, 6(12) (2010), 5709{5723. | ||
آمار تعداد مشاهده مقاله: 3,821 تعداد دریافت فایل اصل مقاله: 1,149 |