تعداد نشریات | 27 |
تعداد شمارهها | 557 |
تعداد مقالات | 5,770 |
تعداد مشاهده مقاله | 8,024,964 |
تعداد دریافت فایل اصل مقاله | 5,394,053 |
L-FUZZY CONVEXITY INDUCED BY L-CONVEX FUZZY SUBLATTICE DEGREE | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 7، دوره 14، شماره 5، دی 2017، صفحه 83-102 اصل مقاله (411.43 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2017.3434 | ||
نویسندگان | ||
Juan Li ![]() | ||
School of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China | ||
چکیده | ||
In this paper, the notion of $L$-convex fuzzy sublattices is introduced and their characterizations are given. Furthermore, the notion of the degree to which an $L$-subset is an $L$-convex fuzzy sublattice is proposed and its some characterizations are given. Besides, the $L$-convex fuzzy sublattice degrees of the homomorphic image and pre-image of an $L$-subset are studied. Finally, we obtain an $L$-fuzzy convexity, which is induced by the $L$-convex fuzzy sublattice degrees, in the sense of Shi and Xiu. | ||
کلیدواژهها | ||
$L$-convex fuzzy sublattice؛ Implication operator؛ $L$-convex fuzzy sublattice degree؛ $L$-fuzzy convexity | ||
مراجع | ||
[1] N. Ajmal and K. V. Thomas, Fuzzy lattice, Information Sciences, 79 (1994), 271{291. [2] M. Berger, Convexity, Amer. Math. Monthly, 97 (1990), 650{678. [3] G. Birkho, Lattice Theory, American Mathematical Society, Providence, RI, 1984. [4] W. A. Coppel, Axioms for convexity, Bull. Austral. Math. Soc., 47 (1993), 179{197. [5] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990. [6] S. Daz, E. Indurain, V. Janis and S. Montes, Aggregation of convex intuitionistic fuzzy sets, Information Sciences, 308 (2015), 61{71. [7] G. Gierz, et al., A Compendium of Continuous Lattices, Springer, Berlin, 1980. [8] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145{174. [9] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: U.Hohle, S.E.Rodabaugh(Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, in: Handbook Series,vol.3, Kluwer Academic Publishers, Dordrecht, (1999), 123-173. [10] X. J. Hua, X. L. Xin and X. Zhu, Generalized (convex) fuzzy sublattices, Comput. Math. Appl., 62 (2011), 699{708. [11] J. V. LLinares, Abstract convexity, some relations and applications, Optimization, 51 (2002), 797{818. [12] J. V. LLinares, Unied treatment of the problems of the existence of maximal elements in binary relations: a characterization, J. Math. Econ., 29 (1998), 285{302. [13] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164 (2009), 22{37. [14] B. Pang and F. G. Shi, Subcategories of the category of L-convex spaces, to appear in Fuzzy Sets and Systems, http://dx.doi.org/10.1016/j.fss.2016.02.014. [15] B. Pang and Y. Zhao, Characterizations of L-convex spaces, Iranian Journal of Fuzzy Systems, 13(4) (2016), 51{61. [16] X. Pan, Graded intuitionistic fuzzy convexity with application to fuzzy decision making, Lect. Notes Electr. Eng., 136 (2012), 709{716. [17] T. Rapcsak, Geodesic convexity in nonlinear optimization, J. Optimiz. Theory Appl., 69 (1991), 169{183. [18] M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets and Systems, 62 (1994), 97{100. [19] M. V. Rosa, A study of fuzzy convexity with special reference to separation properties, Ph.D. thesis, Cochin University of Science and Technology, 1994. [20] F. G. Shi, L-fuzzy relation and L-fuzzy subgroup, J. Fuzzy Math., 8 (2000), 491{499. [21] F. G. Shi and Z. Y. Xiu, A new approach to the fuzzication of Convex Structures, J. Appl. Math., 2014 (2014), 12 pages. [22] F. G. Shi and Z. Y. Xiu, (L;M)-fuzzy convex structures, J. Nonlinear Sci. Appl., 10 (2017), 3655-3669. [23] F. G. Shi and X. Xin,, L-fuzzy subgroup degrees and L-fuzzy normal subgroup degrees, J. Adv. Res. Pure Math., 3 (2011), 92{108. [24] A. Tepavcevic and D. Trajkovski, L-fuzzy lattices: an introduction, Fuzzy Sets and Systems, 123 (2001), 209{216. [25] M. L. J. van de Vel, Theory of Convex Structures, North-Holland, New York, 1993. [26] G. J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992), 351{376. [27] X. L. Xin and Y. L. Fu, Some results of convex fuzzy sublattices, J. Intell. Fuzzy Syst., 27 (2014), 287{298. [28] Z. Y. Xiu, Research on (L;M)-fuzzy convexity spaces and their related theory, Ph.D.Thesis, Beijing Institute of Technology, (in Chinese), 2015. [29] W. Xu, Y. Liu and W. Sun, On starshaped intuitionistic fuzzy sets, Appl. Math., 2 (2011), 1051{1058. [30] B. Yuan and W. Wu, Fuzzy ideal on a distributive lattice, Fuzzy Sets and Systems, 35 (1990), 231{240. [31] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 238{353. [32] C. Zhang, P. Xiao, S. Wang and X. Liu, (s,t]-Intuitionistic convex fuzzy sets, Adv. Intell. Soft Comput., 78 (2010), 75{84. | ||
آمار تعداد مشاهده مقاله: 379 تعداد دریافت فایل اصل مقاله: 462 |