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FUZZY ROUGH N-ARY SUBHYPERGROUPS

V. LEOREANU FOTEA

Abstract. Fuzzy rough n-ary subhypergroups are introduced and character-

ized.

1. Introduction

n-ary structures, particularly n-ary groups, were introduced by Dörnte in [10]
and since then, n-ary systems have been studied in depth in different contexts.
These systems have many applications in various fields of science, e.g. physics,
quantum group theory, codes and topology. In [13] Davvaz and Vougiouklis defined
n-ary hyperstructures, which are a generalization of the hyperstructures introduced
by Marty [20], and constitute a field of algebra with applications in geometry,
graphs and hypergraphs, binary relations, lattices, fuzzy and rough sets, automata,
cryptography, codes, artificial intelligence, probability (see [4]). Some applications
of n-ary hypergroups to binary relations and lattices were studied by Leoreanu
Fotea and Davvaz in [18] and [19].

On the other hand, Rosenfeld [30] introduced fuzzy sets in the context of group
theory and formulated the concept of a fuzzy subgroup of a group. Since then, many
researchers have extended the concepts of abstract algebra to a fuzzy framework.
Several basic definitions and results about fuzzy algebra can be found in [21]. Fuzzy
hypergroups have been considered by Zahedi at al. [31] and studied by Davvaz [6]
and Davvaz and Corsini [7], [8]. Rough set theory, introduced by Pawlak (see [23]),
represents a mathematical tool for dealing with vagueness or uncertainty. Rough
sets are especially useful in data analysis, artificial intelligence and the cognitive
sciences (see [24]–[29]). Several basic aspects of the research of rough sets and
applications are presented in [24], [25] by Z. Pawlak and A. Skowron.

Dubois and Prade [11] introduced fuzzy rough sets as a fuzzy generalization of
rough sets. Nanda and Majumdar [22] analyzed the concept of a fuzzy rough set.
J.N. Mordeson [14] studied rough groups and B. Davvaz studied roughness based
on fuzzy ideals [3]. Notes on the lower and upper approximations in a fuzzy group
and rough ideals in semigroups were presented by W. Cheng, Z.W. Mo and J. Wang
in [1]. Roughness in Hv–structures was considered by Davvaz [5]. The upper and
lower approximations of a subset were studied by Leoreanu-Fotea (see [15]) in the
context of hypergroups.
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In this paper we introduce and characterize fuzzy rough n-ary subhypergroups.
In other words, we consider the problem of fuzzification of rough n-ary subhyper-
groups. Fuzzy algebraic structures - in particular, fuzzy lattices and join hyperop-
erations - have been used in several engineering and computer science applications
[12], [26], [27]. Hence we expect that the results of this work may in the future prove
useful in similar applications. The present research can be exyended to the analysis
some particular classes (e.g. closed, invertible, ultraclosed ) of fuzzy rough n-ary
subhypegroups, starting from the corresponding classes of n-ary subhypegroups.

2. n-hypergroups and Approximations in n-ary Hypergroups

We first present some basic notions and results about n-hypergroups (see [9]),
which are needed in this paper.

Let H be a nonempty set and n ∈ IN, n ≥ 2.
Consider f : Hn → P ∗(H), where P ∗(H) is the set of all nonempty subsets of H.

Then f is called an n-ary hyperoperation on H and the pair (H, f) is called an n-
hypergroupoid. If A1, A2, ..., An are subsets of H, then we define f(A1, A2, ..., An) =
∪{f(a1, .., an) | ai ∈ Ai, i ∈ {1, 2, ..., n}}.

We shall denote the sequence ai, ai+1, ..., aj by aj
i . For j < i, the symbol aj

i is
the empty set.

Definition 2.1.
1◦. The n-hypergroupoid (H, f) is called an n-ary semihypergroup if for i, j ∈

{1, 2, ..., n} and a2n−1
1 of H, we have

f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i ) = f(aj−1

1 , f(an+j−1
j ), a2n−1

n+j ).

2◦. We say that (H, f) is an n-ary quasihypergroup if for all a0, a1, ..., an∈H
and fixed i ∈ {1, ..., n} there exists x ∈ H such that

a0 ∈ f(ai−1
1 , x, an

i+1).

3◦. An n-ary hypergroup is both an n-ary semihypergroup and an n-ary quasi-
hypergroup.

4◦. An n-ary hypergroup (H, f) is commutative if for all an
1 of H, and any

permutation σ of {1, 2, ..., n}, we have f(an
1 ) = f(aσ(1), ..., aσ(n)).

Definition 2.2. Let (H, f) be an n-ary hypergroup and K a nonempty subset
of H. If K is closed under the n-ary hyperoperation f then we say that K is
an n-ary subsemihypergroup. An n-ary subsemihypergroup K is called an n-ary
subhypergroup of H if for all k0, k1, ..., kn ∈ K and fixed i ∈ {1, 2, ..., n}, there exists
x ∈ K such that k0 ∈ f(ki−1

1 , x, kn
i+1).

The intersection of n-ary subhypergroups, as well as subhypergroups, can be
empty (see [2]). This can happen since the element x in the above definition is not
always unique.

In what follows, we shall assume that (H, f) is a commutative n-ary hypergroup.
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We recall several types of n-ary subhypergroups together with the connections
among them, in the context of a commutative n-ary hypergroup ([16]).

Let (K, f) be an n-ary subhypergroup of (H, f).

Definition 2.3. We say that
1◦. K is closed if for all kn

1 of K and x of H, it follows from k1 ∈ f(x, kn
2 ) that

x ∈ K.
2◦. K is invertible if it follows from x ∈ f

(
y, K, ...,K︸ ︷︷ ︸

n−1

)
that y ∈ f

(
x, K, ...,K︸ ︷︷ ︸

n−1

)
.

3◦. K is ultraclosed if for all x ∈ H, we have

f
(
x, K, ...,K︸ ︷︷ ︸

n−1

)
∩ f

(
x,H −K, K, ...,K︸ ︷︷ ︸

n−2

)
= ∅.

4◦. K is conjugable if it is closed and for all x ∈ H, there exists x′ ∈ H, such
that f

(
x′, x,K, ..., K︸ ︷︷ ︸

n−2

)
⊆ K.

Several examples of these types of n-ary subhypergroups are given in [16]. We
mention just two:

Example 2.4.
1◦. Let K be an ideal in a modular lattice (L,∨,∧). For all an

1 of L and i ∈
{1, 2, ..., n}, denote A

(i)
n = a1∨...∨ai−1∨ai+1∨...∨an and An = a1∨...∨an.

We set A
(1)
n = a2 ∨ ... ∨ an and A

(n)
n = a1 ∨ ... ∨ an−1.

We define the following n-ary hyperoperation on L:

f(an
1 ) = {x ∈ L | x ∨A(i)

n = An, for all i ∈ {1, 2, ..., n}}.
Then (L, f) is a commutative n-ary hypergroup and (K, f) is an n-ary
subhypergroup of it.

Moreover, K is invertible. If n ≥ 4, then K is not ultraclosed. Indeed,
if h ∈ L−K and k ∈ K, then

h ∨ k ∈ f
(
h ∨ k, K, ...,K︸ ︷︷ ︸

n−1

)
∩ f

(
h ∨ k, L−K, K, ...,K︸ ︷︷ ︸

n−2

)
.

2◦. Let us consider the distributive lattice (P (M),∪,∩) of the parts of a set M ,
which contains at least three elements. Define the following n-ary hyper-
operation on P (M): for all X1, ..., Xn ∈ P (M),

f(X1, ..., Xn) = {Z ∈ P (M) | X1 ∩ ... ∩Xn ⊆ Z ⊆ X1 ∪ ... ∪Xn}.
Then (P (M), f) is a commutative n-ary hypergroup. Let a, b ∈ M , a 6= b
and K = {M − {a},M − {a, b}}. Then (K, f) is an n-ary subhypergroup
of (P (M), f) which is not closed.

Indeed, we have M − {a} ∈ f
(
{b},M − {a, b}, ...,M − {a, b}︸ ︷︷ ︸

n−1

}
.

The following theorem establishes several connections between types of n-ary
subhypergroups defined above ( [16]).
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Theorem 2.5. Let (H, f) be an n-ary hypergroup.
(i) Any conjugable n-ary subhypergroup (K, f) is ultraclosed;
(ii) Any ultraclosed n-ary subhypergroup (K, f) is invertible;
(iii) Any invertible n-ary subhypergroup (K, f) is closed.

Notice that the intersection of n-ary closed subhypergroups is a closed n-ary
subhypergroup.

Let us now recall the notion of rough sets .
Let H be a nonempty set and A ⊂ H.
If R is an equivalence relation on H, then the pair (R(A), R(A)) is called the

rough set of A, with respect to R, where

R(A) = {x ∈ H | x̄ ⊆ A} and R(A) = {x ∈ H | x̄ ∩A 6= ∅}.

We have denoted the equivalence class of x ∈ H by x̄.
R(A) is called the lower approximation of A, while R(A) is called the upper

approximation of A.
Let us consider now (H, f) a commutative n-ary hypergroup, A ⊆ H and K an

invertible n-ary hypergroup. Denote

AprK(A) =
{
x ∈ H | f

(
x,K, ...,K︸ ︷︷ ︸

n−1

)
⊆ A

}
and

AprK(A) =
{
x ∈ H | f

(
x,K, ...,K︸ ︷︷ ︸

n−1

)
∩A 6= ∅

}
.

The set AprK(A) is called the lower approximation of A with respect to K, while
the set AprK(A) is called the upper approximation of A with respect to K. The
pair

(
AprK(A), AprK(A)

)
is called the rough set of A with respect to K.

Consider the equivalence relation RK , defined as follows:

xRk y if and only if x ∈ f
(
y, K, ...,K︸ ︷︷ ︸

n−1

)
. Then, for all x ∈ H, we have x̄ = f

(
x, K, ...,K︸ ︷︷ ︸

n−1

)
and so

AprK(A) = R K(A) and AprK(A) = RK(A).

Roughness of n-ary hypergroups was introduced and analyzed in [17].
A subset A of an n-ary hypergroup (H, f) is called definable with respect to K

if AprK(A) = A = AprK(A). If AprK(A) and AprK(A) are n-ary subhypergroups
of (H, f), then AprK(A) is called a rough n-ary subhypergroup of (H, f).

In [17] it is proved that

Theorem 2.6. If K1 ⊆ K2, K1 is an invertible n-ary subhypergroup and K2 is a
closed n-ary subhypergroup of (H, f), then AprK1(K2) is a rough n-ary subhyper-
group of (H, f).
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3. Fuzzy Rough n-ary Subhypergroups

In order to introduce the notion of a fuzzy rough n-ary subhypergroup, we first
recall the notion of an fuzzy n-ary subgroup.

Let (H, f) be an n-ary hypergroup. For all x, yn
2 of H, we denote x/yn

2 = {u |
x ∈ f(u, yn

2 )}.
A fuzzy subset A is called a fuzzy n-ary subhypergroup if, for all xn

1 of H, the
following conditions hold:

(1) for all z ∈ f(xn
1 ), we have µA(z) ≥ min{µA(x1), ..., µA(xn)};

(2) there exists u ∈ x1/xn
2 such that µA(u) ≥ min{µA(x1), ..., µA(xn)}.

Fuzzy n-ary subhypergroups were introduced and analized by Davvaz and Corsini
[8].

Now let H 6= ∅, A ⊆ X ⊆ H and R be an equivalence relation on H.

A fuzzy rough set (R(A), R(A)) is characterized by a pair of maps

µR(A) : R(X) −→ [0, 1] and µ
R(A)

: R(X) −→ [0, 1]

such that µR(A)(x) ≤ µ
R(A)

(x), for all x ∈ R(X).

Let S be an n-ary invertible subhypergroup of an n-ary hypergroup (H, f). If
AprS(X) =

(
AprS(X), AprS(X)

)
is a rough n-ary subhypergroup of H, then the

set
ÂprS(X) = AprS(X)−AprS(X)

is called the boundary region of X.
Let A ⊆ X and AprS(A) =

(
AprS(A), AprS(A)

)
be a fuzzy rough set.

We define µAprS(A) : AprS(X) −→ [0, 1] as follows:

µAprS(A)(x) =

{
µAprS(A)(x), if x ∈ AprS(X)

0, if x ∈ ÂprS(X).

For all x ∈ AprS(X), denote µ̃A(x) =
[
µAprS(A)(x), µAprS(A)(x)

]
.

An interval–valued fuzzy subset A is given by

A = {(x, µ̃A(x)) | x ∈ AprS(X)}.

Let I1 = [a1, b1], I2 = [a2, b2] be closed subintervals of [0, 1]. We define

r max(I1, I2) = [a1 ∨ a2, b1 ∨ b2]

r min(I1, I2) = [a1 ∧ a2, b1 ∧ b2]

We say that I2 ≤ I1 if a2 ≤ a1 and b2 ≤ b1.
We shall say that µ̃A(x) is a closed subinterval of [0, 1] even if it contains only

one element, which means that

µAprS(A)(x) = µAprS(A)(x).
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Now we introduce the notion of a fuzzy rough n-ary subhypergroup, which gen-
eralizes the fuzzy rough subhypergroup notion, studied in [15].

Definition 3.1. If AprS(X) is a rough n-ary subhypergroup of an n-ary hypergroup
(H, f) and A ⊆ X, then the fuzzy rough set

AprS(A) =
(
AprS(A), AprS(A)

)
is called a fuzzy rough n-ary subhypergroup if for all xn

1 of AprS(X), the following
conditions hold:

(1) for all z ∈ f(xn
1 ), we have µ̃A(z) ≥ r min

{
µ̃A(x1), ..., µ̃A(xn)

}
.

(2) there exists u ∈ x1/xn
2 such that µ̃A(u) ≥ r min

{
µ̃A(x1), ..., µ̃A(xn)

}
.

In what follows, we present particular cases and examples of fuzzy rough n-ary
subhypergroups.

Example 3.2.
1◦. Any rough n-ary subhypergroup is a fuzzy rough n-ary subhypergroup.

Indeed, let AprS(X) be a rough n-ary subhypergroup of an n-ary hyper-
group (H, f) and A ⊆ X, such that AprS(A) =

(
AprS(A), AprS(A)

)
is a

rough n-ary subhypergroup. Define µAprS(A) = χAprS(A) and µAprS(A) =
χAprS(A). Clearly, we have χAprS(A) ≤ χAprS(A).

Since AprS(A) is a n-ary subhypergroup, it follows that for all xn
1 of

AprS(X) and z ∈ f(xn
1 ), we have

χAprS(A)(z) ≥ min
{
χAprS(A)(x1), ..., χAprS(A)(xn)

}
and there exists u ∈ x1/xn

2 such that

χAprS(A)(u) ≥ min
{
χAprS(A)(x1), ..., χAprS(A)(xn)

}
.

In other words, for all z ∈ f(xn
1 ), we have

µAprS(A)(z) ≥ min
{
µAprS(A)(x1), ..., µAprS(A)(xn)

}
and there exists u ∈ x1/xn

2 such that

µAprS(A)(u) ≥ min
{
µAprS(A)(x1), ..., µAprS(A)(xn)

}
.

Similarly, since AprS(A) is a n-ary subhypergroup, it follows that for all
z ∈ f(xn

1 ), we have

µAprS(A)(z) ≥ min
{
µAprS(A)(x1), ..., µAprS(A)(xn)

}
and there exists v ∈ x1/xn

2 such that

µAprS(A)(v) ≥ min
{
µAprS(A)(x1), ..., µAprS(A)(xn)

}
.

If for all i ∈ {1, 2, ..., n}, we have xi ∈ AprS(A), then u ∈ AprS(A) and
we consider v = u. If there exists i ∈ {1, 2, ..., n}, such that xi /∈ AprS(A),
then u can be any element of x1/xn

2 and so, we can take u = v.
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From µ̃A(x) =
[
µAprS(A)(x), µAprS(A)(x)

]
, it follows that for all z ∈

f(xn
1 ), we have

µ̃A(z) ≥ r min
{
µ̃A(x1), ..., µ̃A(xn)

}
and there exists u ∈ x1/xn

2 such that

µ̃A(u) ≥ r min
{
µ̃A(x1), ..., µ̃A(xn)

}
,

which means that AprS(A) =
(
AprS(A), AprS(A)

)
is a fuzzy rough n-ary

subhypergroup of (H, f).

2◦. Let (L, f) be the commutative n-ary hypergroup defined in Example 2.4.,1◦.
If K is an ideal of (L,∨,∧), then (K, f) is an invertible n-ary subhypergroup
of (L, f).

Let K1 ⊆ K2, where K1 is an invertible n-ary subhypergroup and K2

is a closed n-ary subhypergroup of (L, f). According to Theorem 2.6.,
AprK1(K2) is a rough n-ary subhypergroup of (L, f).

If A ⊆ K2, such that AprK1(A) is a n-ary subhypergroup, then define
µAprK1 (A) = χAprK1 (A) and let µAprK1 (A) that satisfies the following condi-
tions:
(α). for all x ∈ AprK1(A), we have µAprK1 (A)(x) = 1;

(β). for all x, y ∈ AprK1(K2), we have

µAprK1 (A)(x ∨ y) = min{µAprK1 (A)(x), µAprK1 (A)(y)}.

From the condition (α), we obtain χAprK1 (A) ≤ µAprK1 (A). On the other
hand, for all z ∈ f(xn

1 ), we have z ≤ x1 ∨ x2 ∨ ...∨ xn, and so z ∨ x1 ∨ x2 ∨
... ∨ xn = x1 ∨ x2 ∨ ... ∨ xn. From (β), we obtain

min{µAprK1 (A)(z), µAprK1 (A)(x1), µAprK1 (A)(x2), ..., µAprK1 (A)(xn)} =

min{µAprK1 (A)(x1), µAprK1 (A)(x2), ..., µAprK1 (A)(xn)},

whence

µAprK1 (A)(z) ≥ min{µAprK1 (A)(x1), µAprK1 (A)(x2), ..., µAprK1 (A)(xn)}.

On the other hand, there exists v = x1 ∨ x2 ∨ ... ∨ xn ∈ x1/xn
2 . For the

n-ary hyperoperation f defined in Example 2.4.,1◦, we have x1 ∈ f(v, x2
n)

if and only if v ∈ f(x1, x
2
n) and so, similarly, we obtain

µAprK1 (A)(v) ≥ min
{
µAprK1 (A)(x1), ..., µAprK1 (A)(xn)

}
.

If for all i ∈ {1, 2, ..., n}, we have xi ∈ AprK1(A), then v = x1 ∨x2 ∨ ...∨
xn ∈ f(x1, ..., xn) ⊆ AprK1(A) and we have

µAprK1 (A)(v) ≥ min
{
µAprK1 (A)(x1), ..., µAprKn (A)(xn)

}
.
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If there exists i ∈ {1, 2, ..., n}, such that xi /∈ AprK1(A), then any element
u of x1/xn

2 satisfies

µAprK1 (A)(u) ≥ min
{
µAprK1 (A)(x1), ..., µAprKn (A)(xn)

}
and so, we can take u = v.

Since µ̃A(x) =
[
µAprK1 (A)(x), µAprK1 (A)(x)

]
, it follows that µ̃A satisfies

the conditions (1) and (2) of Definition 3.1. and AprK1(A) is a fuzzy rough
n-ary subhypergroup of (L, f).

3◦. Let (H, ·) be a hypergroup. If, for all x1, ..., xn of H, we define

f(x1, ..., xn) =
n∏

i=1

xi,

then (H, f) is an n-ary hypergroup. If (S, ·) is an invertible subhypergroup
of (H, ·) and aprS(A) =

(
apr

S
(A), aprS(A)

)
is a fuzzy rough subhypergroup

of (H, ·), where

apr
S
(A) = {x | xS ⊆ A}andaprS(A) = {x | xS ∩A 6= ∅}

, then (S, f) is an invertible n-ary subhypergroup of (H, f) and AprS(A) =(
AprS(A), AprS(A)

)
is a fuzzy rough n-ary subhypergroup of (H, f), where

AprS(A) = {x | f(x, S, ..., S︸ ︷︷ ︸
n−1

) ⊆ A},

AprS(A) = {x | f(x, S, ..., S︸ ︷︷ ︸
n−1

) ∩A 6= ∅}.

Now we define the level rough set notion in the context of rough n-ary hyper-
groups.

Definition 3.3. Let AprS(X) be a rough n-ary subhypergroup of an n-ary hy-
pergroup (H, f), A ⊆ X and

(
AprS(A), AprS(A)

)
be a fuzzy rough set. For each

t ∈ [0, 1], we define

At =
{
x ∈ AprS(X) | µAprS(A)(x) ≥ t

}
,

At =
{
x ∈ AprS(X) | µAprS(A)(x) ≥ t

}
.

The pair
(
At, At

)
is called a level rough set. If both At and At are n-ary subhyper-

groups of H, then
(
At, At

)
is called a level rough n-ary subhypergroup of H.

In what follows, we shall characterize fuzzy rough subhypergroups of a hyper-
group, by using level rough sets. As a consequence, we can characterize fuzzy n-ary
subhypergroups, using level subsets.

Let AprS(X) be a rough closed n-ary subhypergroup of an n-ary hypergroup
(H, f) and A ⊆ X, be such that AprS(A) =

(
AprS(A), AprS(A)

)
is a fuzzy rough

set.
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Lemma 3.4. If AprS(A) =
(
AprS(A), AprS(A)

)
is a fuzzy rough n-ary subhyper-

group, then for all t ∈ [0, 1], the pair
(
At, At

)
is a level rough n-ary subhypergroup

of (H, f).

Proof. Set t ∈ [0, 1] and let xn
1 be arbitrary in At.

Then for all i we have µAprS(A)(xi) ≥ t. Also,

r min
{
µ̃A(xn

1 )
}
≥

[
t,min

{
µAprS(A)(x

n
1 )

}]
≥

[
t,min

{
µAprS(A)(xn

1 )
}]

.

It follows by hypothesis that

µ̃A(z) ≥
[
t, min

{
µAprS(A)(xn

1 ))
}]

, for all z ∈ f(xn
1 ).

Since xn
1 ∈ AprS(X), we have z ∈ AprS(X) for all z ∈ f(xn

1 ). Hence µAprS(A)(z) ≥
t, which means that z ∈ At.

We now show that there exists u ∈ At, such that x1 ∈ f(u, xn
2 ). By hy-

pothesis, there exists u ∈ x1/xn
2 , such that µ̃A(u) ≥ r min

{
µ̃A(xn

1 )
}
. We obtain

µ̃A(u) ≥
[
t, min

{
µAprS(A)(xn

1 )
}]

. Since AprS(X) is a closed n-ary subhypergroup
and xn

1 ∈ AprS(X), it follows that x1/xn
2 ⊆ AprS(X). Hence, u ∈ AprS(X) and

µAprS(A)(u) ≥ t, which means that u ∈ At. Therefore, At is an n-ary subhyper-
group of (H, f).

Now, let us consider xn
1∈At. For all i, we have µAprS(A)(xi) ≥ t , whence

r min
{
µ̃A(xn

1 )
}
≥ [0, t].

It follows that for all z ∈ f(xn
1 ), we have µ̃A(z) ≥ [0, t] and there exists u ∈ x1/xn

2

such that µ̃A(u) ≥ [0, t]. Hence µAprS(A)(z) ≥ t and µAprS(A)(u) ≥ t. Since
AprS(X) is a closed n-ary subhypergroup we conclude that z, u ∈ AprS(X). Hence
z, u ∈ At. In other words, At is an n-ary subhypergroup of (H, f). �

Lemma 3.5. If AprS(A) =
(
AprS(A), AprS(A)

)
is a fuzzy rough n-ary subhyper-

group, then for all s, t ∈ [0, 1], such that As ∩ At 6= ∅, the intersection As ∩ At is
an n-ary subhypergroup of (H, f).

Proof. Let s, t ∈ [0, 1], such that As ∩ At 6= ∅,. Let xn
1 ∈ As ∩ At. It follows

that xn
1 ∈ AprS(X). By hypothesis, there exists u ∈ x1/xn

2 , such that µ̃A(u) ≥
r min

{
µ̃A(xn

1 )
}
. As above, we obtain that u ∈ As. On the other hand, µ̃A(u) ≥[

s,min
{
µAprS(A)(x

n
1 )

}]
, whence µAprS(A)(u) ≥ min

{
µAprS(A)(x

n
1 )

}
≥ t. Hence

u ∈ At. Similarly, for all z ∈ f(xn
1 ) we obtain z ∈ As ∩At. Therefore As ∩At is an

n-ary subhypergroup of (H, f). �

Lemma 3.6. If for all t ∈ [0, 1], the pair
(
At, At

)
is a level rough n-ary subhyper-

group of (H, f) and for all s, t ∈ [0, 1], such that As ∩ At 6= ∅ and the intersection
As ∩ At is an n-ary subhypergroup of (H, f), then AprS(A) is a fuzzy rough n-ary
subhypergroup.
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Proof. For all t ∈ [0, 1], At and At are n-ary subhypergroups of (H, f). Let xn
1 be

arbitrary in AprS(X). Denote r min
{
µ̃A(x1), ..., µ̃A(xn)

}
by [t0, t1]. We have

min
{
µAprS(A)(xn

1 )
}

= t0 and

min
{
µAprS(A)(x

n
1 )

}
= t1.

Since xn
1 ∈ At1 , it follows that for all z ∈ f(xn

1 ), we have z ∈ At1 . Now, we have
the following cases:

1◦. If there is i such that xi ∈ ÂprS(X), then t0 = 0. For all z ∈ f(xn
1 ), we have

µAprS(A)(z) ≥ 0 = t0. On the other hand, from xn
1 ∈ At1 , it follows that

there exists u ∈ x1/xn
2 , such that u ∈ At1 . Moreover, µAprS(A)(u) ≥ 0 = t0.

2◦. If for all i, we have xi ∈ AprS(X), then µAprS(A)(xi) = µAprS(A)(xi). We
have xn

1 ∈ At0 , whence z ∈ At0 for all z ∈ f(xn
1 ). Hence,

µ̃A(z) =
[
µAprS(A)(z), µAprS(A)(z)

]
≥ [t0, t1] = r min

{
µ̃A(xn

1 )
}
.

Now we show that there exists u ∈ x1/xn
2 , such that µ̃A(u) ≥ [t0, t1]. Since

At1 ∩ At0 is an n-ary subhypergroup of (H, f) and xn
1 ∈ At1 ∩ At0 , it

follows that there exists u ∈ x1/xn
2 such that u ∈ At1 ∩ At0 . We obtain

µ̃A(u) =
[
µAprS(A)(u), µAprS(A)(u)

]
≥ [t0, t1].

Therefore AprS(A) =
(
AprS(A), AprS(A)

)
is a fuzzy rough n-ary subhypergroup.

�

Theorem 3.7. Let AprS(X) be a rough closed n-ary subhypergroup of an n-ary
hypergroup (H, f) and, for A ⊆ X, suppose that AprS(A) =

(
AprS(A), AprS(A)

)
is a fuzzy rough set. Then the following conditions are equivalent:

(1) AprS(A) is a fuzzy rough n-ary subhypergroup;
(2) for all t ∈ [0, 1], the pair

(
At, At

)
is a level rough n-ary subhypergroup of

(H, f) and for all s, t ∈ [0, 1], such that As∩At 6= ∅, the intersection As∩At

is an n-ary subhypergroup of (H, f).

Proof. The proof follows immediately from the above three lemmas. �

Example 3.8. In Example 3.2.,2◦, we have A0 = AprK1(K2) and for all t >
0, At = AprK1(A). Both AprK1(K2) and AprK1(A) are n-ary subhypergroups of
(L, f). By condition (β), we obtain that for all s ∈ [0, 1], As is an n-ary subhyper-
group.

By condition (α), for all s ∈ [0, 1], AprK1(A) ⊆ As, whence it follows that for all
s, t ∈ [0, 1], At ∩ As 6= ∅. We have A0 ∩ As = {x ∈ AprK1(K2) | µAprK1 (A)(x) ≥ s}
and for all t, s ∈ [0, 1], At∩As = AprK1(A)∩As = {x ∈ AprK1(A) | µAprK1 (A)(x) ≥
s}, which are also n-ary subhypergroups.

Therefore, it follows from the theorem that AprK1(A) is a fuzzy rough n-ary
subhypergroup of (L, f).
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Corollary 3.9. A fuzzy subset A on an n-ary hypergroup (H, f) is a fuzzy n-ary
subhypergroup if and only if each its non-empty level subset is an n-ary subhyper-
group of (H, f).

Proof. We apply the above theorem for a definable set A and X = H. then
AprS(A) = AprS(A) = A and At = At = {x ∈ X : µA(x) ≥ t}. �

4. Conclusion

The study of properties of fuzzy rough sets in the context of n ary-hypergroups is
an new research topic of fuzzy set theory. The existing research on this topic deals
only with fuzzy rough hyperstructures [15]and for this study, the approximations in
n-ary hyperstructures are important. In this paper, we introduce and characterize
fuzzy rough n-ary subhypergroups and give some examples. Our future work on this
topic will be focused on the study of some particular classes of fuzzy rough n-ary
subhypegroups, starting from the corresponding classes of n-ary subhypergroups.
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