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ROBUSTNESS OF THE TRIPLE IMPLICATION INFERENCE

METHOD BASED ON THE WEIGHTED LOGIC METRIC

J. LI AND C. FU

Abstract. This paper focuses on the robustness problem of full implication

triple implication inference method for fuzzy reasoning. First of all, based on

strong regular implication, the weighted logic metric for measuring distance
between two fuzzy sets is proposed. Besides, under this metric, some robust-

ness results of the triple implication method are obtained, which demonstrates

that the triple implication method possesses a good behavior of robustness.

1. Introduction

It is well known that fuzzy reasoning is an important component of fuzzy control.
The basic reasoning forms of fuzzy reasoning can be expressed as follows:

FMP: for given A→ B (rule) and A∗ (input), calculate B∗ (output).
FMT: for given A→ B (rule) and B∗ (input), calculate A∗ (output).

where FMP and FMT denote fuzzy modus ponens and fuzzy modus tollens respec-
tively,→ denotes fuzzy implication R. A,A∗ ∈ F(X) and B,B∗ ∈ F(Y ) (F(X) and
F(Y ) denote the set of all fuzzy subsets of universe X and Y respectively).Zadeh
[31] proposed the compositional rule of inference (CRI method for short) for solving
the fundamental forms of fuzzy reasoning mentioned above. Subsequently, many
other methods of fuzzy reasoning have been known (see [7, 8, 25, 29]). In particular,
Wang [25] proposed a novel method, called the full implication triple implication
method (triple I method for short), which has been widely investigated by some
scholars (see [13, 14, 15, 16, 17, 19, 20, 21, 22, 27, 28]).

When fuzzy reasoning method is applied, the robustness of the fuzzy reasoning
method becomes one of the important problems. Recently, many scholars discussed
the robustness of CRI method for fuzzy reasoning. The goal of the robustness of
fuzzy reasoning method is to discuss how errors in inputs affect outputs in fuzzy
reasoning. In other words, if a small perturbation of input always causes small
changes of the output, then this method has a good behavior of robustness. Based
on this fact, we may ask two questions: One is what is the meaning of “small
perturbation”. The other is how to measure the perturbation of input. Researchers
in different disciplines introduced different concepts to measure the perturbation
between two fuzzy sets. Pappis [18] proposed the definition of approximately equal
of two fuzzy sets. Hong and Hwang [9] defined the α-similarity of two fuzzy sets.
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Cai [2, 3] introduced the δ-equalities of fuzzy sets and discussed robustness of CRI
method based on δ-equalities of fuzzy sets. Ying [30] introduced the concepts of
maximum and average perturbations of fuzzy sets. Dai et al. [5] considered the
concept of perturbation based on the normalized Minkowski distances. Cheng and
Fu [4] discussed simple perturbation and interval perturbation of fuzzy sets. Li
et al. [12] presented the concept of sensitivity of connectives for measuring the
robustness of fuzzy reasoning. In previous work, the perturbation of fuzzy sets are
based on the Chebyshev distance or Minkowski distances. However, the robustness
of fuzzy reasoning mainly depends on fuzzy connectives and fuzzy implications. For
this reason, Dai et al. [6] introduced the logic similarity degree between fuzzy sets
and analyzed the robustness of triple I method. Wang and Duan [23] investigated
robustness of triple I method based on average logic similarity degree. Both the
logic similarity degree and the average logic similarity degree are a new perturbation
parameter, which can be expressed as follows respectively:

S(A,B) =

n∧
i=1

[R(A(xi), B(xi)) ∧R(B(xi), A(xi))], for A,B ∈ F(X).

S∗(A,B) =
1

n

n∑
i=1

[R(A(xi), B(xi)) ∧R(B(xi), A(xi))], for A,B ∈ F(X).

where R is a fuzzy implication. However, by comparing and analyzing these con-
cepts, we discover that the difference between them is largely due to the underlying
measurements adopted, and some shortages of them are pointed out (please see
Remark 3.2 and Remark 3.4 ). Thus, a new measurement induced by implica-
tion operators will be discussed in this paper, and a revised concept of the logic
similarity degree and the average logic similarity degree, called the weighted logic
similarity degree, is proposed under the unified framework of strong regular im-
plication, which can naturally induce a fuzzy metric. Based on this new concept,
robustness of triple I inference method will be investigated.

The rest of this paper is organized as follows. In section 2, we recall some neces-
sary concepts and propositions. In section 3, some definitions of the logic similarity
degree and the average logic similarity degree are analyzed and the weighted logic
metric are proposed. In section 4, we discuss the robustness of the triple I method
by utilizing the weighted logic metric. We conclude with a short summary in section
5.

2. Preliminaries

In this section, we firstly review some basic concepts and results.

Definition 2.1. [8, 10] A mapping T :[0, 1]2 → [0, 1] is called t-norm if and only if

(i) T is nondecreasing in each argument;
(ii) T is commutative;

(iii) T is associative;
(iv) T (a, 1) = a for all a ∈ [0, 1].
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Definition 2.2. [10, 21] A t-norm T is a left-continuous t-norm if for every non-
empty index set I, the following equality holds:

T (
∨
i∈I

ai, b) =
∨
i∈I

T (ai, b). (1)

Proposition 2.3. [10, 20] Let T be a left-continuous t-norm, then there exists a
binary operation R on [0, 1] such that (T,R) satisfies the residuated principle, i.e.,
T (a, b) ≤ c iff a ≤ R(b, c), then (T,R) is called a residuated pair on [0, 1], and
([0, 1], R, T ) is called a residuated lattice, where R is given by the following equality:

R(a, b) = ∨{c ∈ [0, 1]|T (a, c) ≤ b}.

and R is called a residuated implication(or regular implication)induced by T .

In the following we say that R is a regular implication induced by T .

Proposition 2.4. [21] Suppose that R is a regular implication induced by a left-
continuous t-norm, then the following properties hold for any a, b, c ∈ [0, 1]:

(i) R(b, c) = 1 iff b ≤ c.
(ii) a ≤ R(b, c) iff b ≤ R(a, c).

(iii) R(a,R(b, c)) = R(b, R(a, c)).
(iv) R(1, c) = c.
(v) R(b,

∧
i∈I

ci) =
∧
i∈I

R(b, ci), R(
∨
i∈I

bi, c) =
∧
i∈I

R(bi, c).

(vi) R(a, b) is non-increasing on a, and non-decreasing on b.
(vii) R(b, c) ≤ R(R(a, b), R(a, c)).

(viii) R(a, b) ≤ R(T (a, c), T (b, c)).

Example 2.5. [21] The following are four important left-continuous t-norms and
the corresponding residuated implications.

(i)  Lukasiewicz t-norm and  Lukasiewicz implication

TL(a, b) = (a+ b− 1) ∨ 0, RL(a, b) = (1− a+ b) ∧ 1.

(ii) Minimum t-norm and Gödel implication

TG(a, b) = a ∧ b, RG(a, b) =

{
1, a ≤ b,
b, a > b.

(iii) Product t-norm and Goguen implication

Tp(a, b) = ab, Rp(a, b) =


1, a ≤ b,
b

a
, a > b.

(iv) Nilpotent minimum t-norm and R0 implication

T0(a, b) =

{
a ∧ b, a+ b > 1,

0, a+ b ≤ 1.
R0(a, b) =

{
1, a ≤ b,
(1− a) ∨ b, a > b.
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Definition 2.6. [11] (i) A left-continuous t-norm T is said to be strong left-
continuous t-norm for any a, b ∈ [0, 1], if T satisfies the following inequality:

TL(a, b) ≤ T (a, b).

Where TL is the  Lukasiewicz t-norm.
(ii) A regular implication R is said to be strong regular implication for any a, b ∈
[0, 1], if R satisfies the following inequality:

R(a, b) ≤ RL(a, b),

where RL is the  Lukasiewicz implication.

It’s easy to verify that  Lukasiewicz implication, Goguen implication, Gödel
implication and R0 implication are all strong regular implication. Furthermore,
 Lukasiewicz implication is the greatest strong regular implication, Gödel implica-
tion is the smallest strong regular implication,  Lukasiewicz t-norm is the smallest
strong left continuous t-norm, while Gödel t-norm is the greatest one. Finally, A
regular implication R induced by strong left continuous t-norm T is strong regular
implication.

Lemma 2.7. Assume that R is a regular implication on [0, 1], then for any a, b, c ∈
[0, 1], R is a strong regular implication on [0, 1] if and only if R(a, c)+1 ≥ R(a, b)+
R(b, c).

Proof. Firstly, if R is a strong regular implication on [0, 1], then it follows from
Proposition 2.4(vii) and Definition 2.6(ii) that

R(b, c) ≤ R(R(a, b), R(a, c)) ≤ RL(R(a, b), R(a, c)).

If R(a, b) ≤ R(a, c), then R(b, c) ≤ RL(R(a, b), R(a, c)) = 1. Thus we have R(a, c)+
1 ≥ R(a, b) +R(b, c).
If R(a, b) > R(a, c), then R(b, c) ≤ RL(R(a, b), R(a, c)) = 1 − R(a, b) + R(a, c).
Then we have R(a, c) + 1 ≥ R(a, b) +R(b, c).

Secondly, suppose that R(a, c) + 1 ≥ R(a, b) + R(b, c). Let a = 1, by using
Proposition 2.4(iv), we obtain 1− b+ c ≥ R(b, c).
Moreover, since 1 ≥ R(b, c), then we can get (1− b+ c) ∧ 1 ≥ R(b, c).

i.e.,

RL(b, c) ≥ R(b, c).

This completes the proof of the Lemma 2.7. �

Definition 2.8. [10] Let ([0, 1], T,R) be a residuated lattice. Define

ρR(a, b) = a↔ b = R(a, b) ∧R(b, a) a, b ∈ [0, 1].

Definition 2.9. [24] Let X be a nonempty set, if a mapping d : X2 → [0, 1] satisfies
the following conditions:

(i) d(a, b) ≥ 0, and d(a, b) = 0 if and only if a = b.
(ii) d(a, b) = d(b, a).
(iii) d(a, c) ≤ d(a, b) + d(b, c).

then d is called a metric on the set X.
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Lemma 2.10. Assume that R is a strong regular implication on [0, 1]. Define

h(a, b) = 1− ρR(a, b) = 1−R(a, b) ∧R(b, a) a, b ∈ [0, 1]. (2)

Then h is a metric on [0, 1].

Proof. Firstly, it is easy to verify that h(a, b) = 0 iff a = b, and h(a, b) = h(b, a) .
Secondly, in order to prove that h(a, c) ≤ h(a, b) + h(b, c), we need only to prove
that

ρR(a, b) + ρR(b, c) ≤ 1 + ρR(a, c) ∀a, b, c ∈ [0, 1]. (3)

Since R is a strong regular implication, according to Lemma 2.7, we have

R(a, c) ≥ R(a, b) +R(b, c)− 1.

In addition, since R(a, b) ≥ ρR(a, b), then we can obtain

R(a, c) ≥ R(a, b) +R(b, c)− 1 ≥ ρR(a, b) + ρR(b, c)− 1.

Similarly, we can obtain

R(c, a) ≥ R(c, b) +R(b, a)− 1 ≥ ρR(a, b) + ρR(b, c)− 1.

Hence

ρR(a, c) = R(a, c) ∧R(c, a) ≥ ρR(a, b) + ρR(b, c)− 1.

Therefore, we can conclude that h is a metric on [0, 1]. �

In the following, we present the triple I principles and triple I solutions based on
the strong regular implication.

The triple I principle for FMP (See[20, 25]): The solution B∗ of FMP should
be the smallest fuzzy set on Y such that the following formula attains the greatest
value for all xi ∈ X, yj ∈ Y :

R(R(A(xi), B(yj)), R(A∗(xi), B
∗(yj))).

The triple I principle for FMT (See[20, 25]): The solution A∗ of FMT should
be the greatest fuzzy set on X such that the following formula attains the greatest
value for all xi ∈ X, yj ∈ Y :

R(R(A(xi), B(yj)), R(A∗(xi), B
∗(yj))).

Proposition 2.11. [19, 27] Suppose that R is a strong regular implication, (R, T )
is a residuated pair, then

(i) the triple I solution B∗ of FMP can be expressed as follows:

B∗(yj) =

n∨
i=1

T (A∗(xi), R(A(xi), B(yj))), yj ∈ Y ; (4)

(ii) the α-triple I solution B∗α of FMP can be expressed as follows:

B∗α(y) = T (α,

n∨
i=1

T (A∗(xi), R(A(xi), B(yj)))) = T (α,B∗(yj )), yj ∈ Y ;
(5)

Proposition 2.12. [19, 27] Suppose that R is a strong regular implication, then
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(i) the triple I solution A∗ of FMT can be expressed as follows:

A∗(xi) =

m∧
j=1

R(R(A(xi), B(yj)), B
∗(yj)), xi ∈ X;

(6)

(ii) the α-triple I solution A∗α of FMT can be expressed as follows:

A∗α(xi) =

m∧
j=1

R(α,R(R(A(xi), B(yj)), B
∗(yj))) = R(α,A∗(xi)), xi ∈ X; (7)

3. Weighted Logic Metric Between Two Fuzzy Sets

In this section, we will compare different similarity degree between two fuzzy
sets and point out some blemishes of them. Besides, the weighted logic metric for
measuring distance of two fuzzy sets is proposed.

Because in most of practical problems, the universe of fuzzy sets usually involves
finite elements, and the computer can only store finite elements, thus through-
out this paper we always suppose that universes X and Y are finite and X =
{x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}.

Definition 3.1. [1, 6] Let R be a fuzzy implication on [0, 1]. For A,B ∈ F(X),
define

S(A,B) =

n∧
i=1

ρR(A(xi), B(xi)) =

n∧
i=1

[R(A(xi), B(xi)) ∧R(B(xi), A(xi))]. (8)

S(A,B) is called the logic similarity degree of A and B.

Remark 3.2. For each object xi ∈ X, if we think of ρR(A(xi), B(xi)) as the local
similarity degree of A and B in object xi, then the logic similarity degree S(A,B)
given by (8) is the infimum of all local similarity degrees. Especially, when the
universe X is finite, S(A,B) is essentially the minimum value of all local similarity
degrees. In this way, information aggregation is only concerned with the object xi
whose local similarity degree is the minimum value of all local similarity degrees,
while the information provided by the rest objects will be completely abandoned,
this will inevitably result in the loss of information.

Definition 3.3. [23, 26] For A,B ∈ F(X), define

S∗(A,B) =
1

n

n∑
i=1

ρR(A(xi), B(xi))

=
1

n

n∑
i=1

[R(A(xi), B(xi)) ∧R(B(xi), A(xi))]. (9)

S∗(A,B) is called the average logic similarity degree of A and B. Where R are only
the four important implications from example 2.5.

Remark 3.4. To remedy the shortage of logic similarity degree, Wang and Duan
(see[23]) introduced the average logic similarity degree S∗(A,B) of fuzzy sets A and
B given by (9). Essentially, S∗(A,B) is the arithmetic mean of all local similarity
degrees, in other words, the weights of each object xi are same. But in many
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practical applications, the importance of each object xi may be different. Hence,
in order to make up this defect, we will propose an improved similarity degree,
named the weighted logic similarity degree, by giving different weights for each
object xi, the average logic similarity degree is just a special case of the weighted
logic similarity degree.

Definition 3.5. Let R be a strong regular implication on [0, 1]. For A,B ∈ F(X),
define

SR(A,B) =

n∑
i=1

αiρR(A(xi), B(xi))

=

n∑
i=1

αi[R(A(xi), B(xi)) ∧R(B(xi), A(xi))]. (10)

Where
n∑
i=1

αi = 1 and 0 < αi < 1. SR(A,B) is called the weighted logic similarity

degree of A and B.
Obviously, Definition 3.3 is a special case(αi = 1

n ) of Definition 3.5. The weighted
logic similarity degree SR will be written as SRL

, SRG
, SRP

and SR0 , whenever R
is RL, RG, RP and R0, respectively.

Proposition 3.6. Let X be a universe of discourse. For A,B ∈ F(X).

(i) If R is the  Lukasiewicz implication RL, then

SRL
(A,B) = 1−

n∑
i=1

αi|A(xi)−B(xi)|.

(ii) If R is the Gödel implication RG, then

SRG
(A,B) =

[ ∑
A(xi)≤B(xi)

αiA(xi)

]
+

[ ∑
A(xi)>B(xi)

αiB(xi)

]
.

(iii) If R is the Goguen implication RP , then

SRP
(A,B) =

[ ∑
A(xi)≤B(xi)

αi
A(xi)
B(xi)

]
+

[ ∑
A(xi)>B(xi)

αi
B(xi)
A(xi)

]
.

(iv) If R is the R0 implication, then

SR0
(A,B)=

[ ∑
A(xi)≤B(xi)

αi(1−B(xi))∨A(xi)

]
+

[ ∑
A(xi)>B(xi)

αi(1−A(xi))∨B(xi)

]
.

Proposition 3.7. Suppose that R is a strong regular implication on [0, 1]. For
A,B ∈ F(X), define

dR(A,B) = 1− SR(A,B) = 1−
n∑
i=1

αi[R(A(xi), B(xi)) ∧R(B(xi), A(xi))].
(11)

Where
n∑
i=1

αi = 1 and 0 < αi < 1. Then dR is a metric on F(X). dR is called the

weighted logic metric of A and B. If dR(A,B) ≤ ε, then B is called a ε perturbation
of A, where ε ∈ [0, 1].
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Proof. (i) It is easy to prove that dR(A,B) = 0 if and only if A = B.

(ii) dR(A,B) = dR(B,A) is obviously true.

(iii) we need only to prove that SR(A,B) + SR(B,C) ≤ 1 + SR(A,C), for any
A,B,C ∈ F(X). In fact, it follows from (3) that

ρR(A(xi), B(xi)) + ρR(B(xi), C(xi)) ≤ 1 + ρR(A(xi), C(xi)) ∀xi ∈ X.
Thus

n∑
i=1

αiρR(A(xi), B(xi)) +

n∑
i=1

αiρR(B(xi), C(xi)) ≤ 1 +

n∑
i=1

αiρR(A(xi), C(xi)).

i.e.,
SR(A,B) + SR(B,C) ≤ 1 + SR(A,C).

�

Remark 3.8. The weighted logic metric dR will be written as dRL
, dRG

, dRP
and

dR0
, whenever R is RL, RG, RP and R0, respectively. In particular, if R is RL,

then

dRL(A,B) = 1−
n∑
i=1

αi(RL(A(xi), B(xi)) ∧RL(B(xi), A(xi)))

= 1−
n∑
i=1

αi(((1−A(xi) +B(xi)) ∧ 1) ∧ ((1−B(xi) +A(xi)) ∧ 1))

= 1−
n∑
i=1

αi((1−A(xi) +B(xi)) ∧ (1−B(xi) +A(xi))).

Since ∀i(1 ≤ i ≤ n), we have

(1−A(xi) +B(xi)) ∧ (1−B(xi) +A(xi)) =

{
1−A(xi) +B(xi), A(xi) > B(xi),

1−B(xi) +A(xi), A(xi) ≤ B(xi).

= 1− |A(xi)−B(xi)|.

therefore

dRL(A,B) = 1−
n∑
i=1

αi(1− |A(xi)−B(xi)|)

= 1−
n∑
i=1

(αi − αi|A(xi)−B(xi)|)

= 1−
n∑
i=1

αi +

n∑
i=1

αi|A(xi)−B(xi)|.

it follows from
n∑
i=1

αi = 1 that

dRL(A,B) =

n∑
i=1

αi|A(xi)−B(xi)|.

dRL
(A,B) is just right the weighted Hamming distance on F(X).

Proposition 3.9. Suppose that R is a strong regular implication on [0, 1]. For
a, b ∈ [0, 1], then

ρRG
(a, b) ≤ ρR(a, b) ≤ ρRL

(a, b).
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Proof. Firstly, by (ii) of Definition 2.6, we obtain

R(a, b) ≤ RL(a, b) and R(b, a) ≤ RL(b, a).

Thus

ρR(a, b) = R(a, b) ∧R(b, a) ≤ RL(a, b) ∧RL(b, a) = ρRL
(a, b). (12)

Secondly, since RG(a, b) =

{
1, a ≤ b,
b, a > b.

If a ≤ b, then we obtain RG(a, b) = 1 and R(a, b) = 1, thus RG(a, b) = R(a, b).
If a > b, then we obtain RG(a, b) = b, again because b = R(1, b) ≤ R(a, b), thus

RG(a, b) ≤ R(a, b).

Hence, for any a, b ∈ [0, 1], we have

ρRG
(a, b) ≤ ρR(a, b). (13)

Consequently, it follows from (12) and (13) that

ρRG
(a, b) ≤ ρR(a, b) ≤ ρRL

(a, b).

This completes the proof of the proposition 3.9. �

From Proposition 3.9, we can get the following proposition.

Proposition 3.10. Suppose that R is a strong regular implication, then for any
A,B ∈ F(X), we have

dRL
(A,B) ≤ dR(A,B) ≤ dRG

(A,B).

4. The Robustness of Triple I Method Based on Weighted Logic Metric

In this section, we discuss the robustness of triple I method and α-triple I method
for fuzzy reasoning. In order to verify the robustness of triple I method, some
lemmas will be given in the following.

Lemma 4.1. [20] Suppose that X={x1, x2, . . . , xn}, (R, T ) is a residuated pair
on[0,1], then we have the following inequality for any A,B,C,D ∈ F(X), xi ∈ X.

ρR(A(xi) ◦B(xi), C(xi) ◦D(xi)) ≥ ρR(A(xi), C(xi)) + ρR(B(xi), D(xi))− 1.

Where ◦ ∈ {T,R,∨,∧}.

Proof. We only prove the case of ◦ = R. The proofs of ◦ = T , ◦ = ∨, and ◦ = ∧
can similarly be attained. It follows from (3) that

ρR(R(A(xi), B(xi)), R(C(xi), D(xi)))
≥ ρR(R(A(xi), B(xi)), R(A(xi), D(xi)))+
ρR(R(A(xi), D(xi)), R(C(xi), D(xi)))− 1.

In the literature[20], we can obtain the following inequality for any xi ∈ X:

T (ρR(A(xi), B(xi)), ρR(C(xi), D(xi))) ≤ ρR(R(A(xi), C(xi)), R(x(Bi), D(xi))).
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Thus
ρR(R(A(xi), B(xi)), R(C(xi), D(xi)))

≥ ρR(R(A(xi), B(xi)), R(A(xi), D(xi)))+
ρR(R(A(xi), D(xi)), R(C(xi), D(xi)))− 1

≥ T (ρR(R(A(xi), A(xi))), ρR(R(B(xi), D(xi))))+
T (ρR(R(A(xi), C(xi))), ρR(R(D(xi), D(xi))))− 1

≥ ρR(R(A(xi), C(xi))) + ρR(R(B(xi), D(xi)))− 1.

This completes the proof. �

Lemma 4.2. Suppose that X = {x1, x2, . . . , xn}, A,A∗, B,B∗, C, C∗ ∈ F(X), xi ∈
X, and (T,R) is a residuated pair on[0,1]. Then we obtain

ρR(C(xi) ◦1 (A(xi) ◦2 B(xi)), C
∗(xi) ◦1 (A∗(xi) ◦2 B∗(xi)))

≥ ρR(A(xi), A
∗(xi)) + ρR(B(xi), B

∗(xi)) + ρR(C(xi), C
∗(xi))− 2.

Where ◦1 ∈ {T,R,∨,∧}, ◦2 ∈ {T,R,∨,∧}.

Proof. It follows from Lemma 4.1 that

ρR(C(xi) ◦1 (A(xi) ◦2 B(xi)), C
∗(xi) ◦1 (A∗(xi) ◦2 B∗(xi)))

≥ ρR(C(xi), C
∗(xi)) + ρR(A(xi) ◦2 B(xi), A

∗(xi) ◦2 B∗(xi))− 1
≥ ρR(A(xi), A

∗(xi)) + ρR(B(xi), B
∗(xi)) + ρR(C(xi), C

∗(xi))− 2.

This completes the proof. �

Remark 4.3. Lemma 4.1 and Lemma 4.2 still hold when R is a strong regular
implication.

Lemma 4.4. [23] Assume that ai, bi ∈ [0, 1] (i = 1, 2, · · · , n), then the following
inequalities hold:

(i) ρR(
n∨
i=1

ai,
n∨
i=1

bi) ≥
n∑
i=1

ρR(ai, bi)− (n− 1).

(ii) ρR(
n∧
i=1

ai,
n∧
i=1

bi) ≥
n∑
i=1

ρR(ai, bi)− (n− 1).

Proof. We prove (i) by induction. The proof of (ii) can similarly be attained.
If n = 1, then (i) is obviously true. Suppose that (i) is true for n = k, then it
follows from Lemma 4.1 and the induction hypothesis that

ρR(

k+1∨
i=1

ai,

k+1∨
i=1

bi) ≥ ρR(

k∨
i=1

ai,

k∨
i=1

bi) + ρR(ak+1, bk+1)− 1

≥
k∑
i=1

ρR(ai, bi)− (k − 1) + ρR(ak+1, bk+1)− 1

≥
k+1∑
i=1

ρR(ai, bi)− ((k + 1)− 1).

Thus (i) is valid for n = k + 1. This completes the proof. �
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Proposition 4.5. Suppose that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, A,A
′
,

A∗, A
′∗ ∈ F(X), B,B

′
, B∗, B

′∗ ∈ F(Y ), xi ∈ X. (T,R) and R are the residuated

pair on [0,1] and the strong regular implication, respectively. B∗ and B
′∗ are the

triple I solutions of the forms FMP(A,B,A∗) and FMP(A
′
, B
′
, A
′∗), respectively.

Then we have

dR(B∗, B
′∗) ≤ 2n−

n∑
i=1

ρR(A∗(xi), A
′∗(xi)) −

n∑
i=1

ρR(A(xi), A
′
(xi)) + ndR(B,B

′
). (14)

Where
m∑
j=1

βj = 1 and 0 < βj < 1.

Proof. From Lemma 4.1, 4.2, 4.4 and equation(4), we have

dR(B∗,B
′∗)=1−SR(B∗,B

′∗)

=1−
m∑

j=1
βjρR(B∗(yj),B

′∗(yj))

=1−
m∑

j=1
βjρR(

n∨
i=1

T (A∗(xi),R(A(xi),B(yj))),
n∨

i=1
T (A

′∗(xi),R(A
′
(xi),B

′
(yj))))

≤1−
m∑

j=1
βj

[
n∑

i=1
ρR(T (A∗(xi),R(A(xi),B(yj))),T (A

′∗(xi),R(A
′
(xi),B

′
(yj))))−(n−1)

]
≤1−

m∑
j=1

βj

[
n∑

i=1
(ρR(A∗(xi),A

′∗(xi))+ρR(A(xi),A
′
(xi))+ρR(B(yj),B

′
(xi))−2)−(n−1)

]
=1−

m∑
j=1

βj

[
n∑

i=1
ρR(A∗(xi),A

′∗(xi))+
n∑

i=1
ρR(A(xi),A

′
(xi))+nρR(B(yj),B

′
(yj))−2n−(n−1)

]
=1−

n∑
i=1

ρR(A∗(xi),A
′∗(xi))−

n∑
i=1

ρR(A(xi),A
′
(xi))−n

m∑
j=1

βjρR(B(yj),B
′
(yj))+3n−1

=3n−
n∑

i=1
ρR(A∗(xi),A

′∗(xi))−
n∑

i=1
ρR(A(xi),A

′
(xi))−n

m∑
j=1

βjρR(B(yj),B
′
(yj))

=3n−
n∑

i=1
ρR(A∗(xi),A

′∗(xi))−
n∑

i=1
ρR(A(xi),A

′
(xi))−nSR(B,B

′
)

=3n−
n∑

i=1
ρR(A∗(xi),A

′∗(xi))−
n∑

i=1
ρR(A(xi),A

′
(xi))−n(1−dR(B,B

′
))

=3n−
n∑

i=1
ρR(A∗(xi),A

′∗(xi))−
n∑

i=1
ρR(A(xi),A

′
(xi))−n+ndR(B,B

′
)

=2n−
n∑

i=1
ρR(A∗(xi),A

′∗(xi))−
n∑

i=1
ρR(A(xi),A

′
(xi))+ndR(B,B

′
).

This completes the proof. �

We can obtain the following three propositions and they can be proved in the
way similar to Proposition 4.5.

Proposition 4.6. Suppose that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, A,A
′
,

A∗, A
′∗ ∈ F(X), B,B

′
, B∗, B

′∗ ∈ F(Y ), xi ∈ X. (T,R) and R are the residuated

pair on [0,1] and the strong regular implication, respectively. A∗ and A
′∗ are the

triple I solutions of the forms FMT(A,B,B∗) and FMT(A
′
, B
′
, B
′∗), respectively.

Then we have

dR(A∗,A
′∗)≤2m−

m∑
j=1

ρR(B∗(yj),B
′∗(yj))−

m∑
j=1

ρR(B(yj),B
′
(yj))+mdR(A,A

′
).

Where
n∑
i=1

αi = 1 and 0 < αi < 1.
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Proposition 4.7. Suppose that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, A,A
′
,

A∗, A
′∗ ∈ F(X), B,B

′
, B∗, B

′∗ ∈ F(Y ), xi ∈ X. (T,R) and R are the residuated

pair on [0,1] and the strong regular implication, respectively. B∗α and B
′∗
α are the

α-triple I solutions of the forms FMP(A,B,A∗) and FMP(A
′
, B
′
, A
′∗), respectively.

Then we have

dR(B
∗
α, B

′∗
α ) ≤ 2n−

n∑
i=1

ρR(A
∗(xi), A

′∗(xi))−
n∑
i=1

ρR(A(xi), A
′
(xi)) + ndR(B,B

′
).

Where
m∑
j=1

βj = 1 and 0 < βj < 1.

Proposition 4.8. Suppose that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, A,A
′
,

A∗, A
′∗ ∈ F(X), B,B

′
, B∗, B

′∗ ∈ F(Y ), xi ∈ X. (T,R) and R are the residuated

pair on [0,1] and the strong regular implication, respectively. A∗α and A
′∗
α are the α-

triple I solutions of the forms FMT(A,B,B∗) and FMT(A
′
, B
′
, B
′∗), respectively.

Then we have

dR(A
∗
α, A

′∗
α ) ≤ 2m−

m∑
j=1

ρR(B
∗(yj), B

′∗(yj))−
m∑
j=1

ρR(B(yj), B
′
(yj)) +mdR(A,A

′
).

Where
n∑
i=1

αi = 1 and 0 < αi < 1.

Remark 4.9. Assume that dR(A∗, A
′∗) → 0, dR(A,A

′
) → 0 and dR(B,B

′
) → 0,

i.e., ρR(A∗(xi), A
′∗(xi)) → 1, ρR(A(xi), A

′
(xi)) → 1 and ρR(B(yj), B

′
(yj)) →

1. Then it follows from Proposition 4.5 and Proposition 4.7 that dR(B∗, B
′∗) →

0 and dR(B∗α, B
′∗
α ) → 0. In particular, if dR(A∗, A

′∗) = 0, dR(A,A
′
) = 0 and

dR(B,B
′
) = 0, then dR(B∗, B

′∗) = 0. Under this condition, we can know that
small perturbations of input always cause small changes of output, thus we say
that the triple (α-triple) I method of FMP has a good behavior of robustness.
According to the similar analysis, we find that the triple (α-triple) I method of
FMT also has a good behavior of robustness.

We can obtain the following two corollaries from Proposition 4.5 and 4.6 when
A = A

′
and B = B

′
.

Corollary 4.10. Suppose that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, A,A∗,
A
′∗ ∈ F(X), B,B∗, B

′∗ ∈ F(Y ), xi ∈ X. (T,R) and R are the residuated pair on

[0,1] and the strong regular implication, respectively. B∗ and B
′∗ are the triple (α-

triple) I solutions of the forms FMP(A,B,A∗) and FMP(A,B,A
′∗), respectively.

Thus we have

dR(B∗, B
′∗) ≤ n−

n∑
i=1

ρR(A∗(xi), A
′∗(xi)).

Corollary 4.11. Suppose that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, A,A∗,
A
′∗ ∈ F(X), B,B∗, B

′∗ ∈ F(Y ), xi ∈ X. (T,R) and R are the residuated pair on

[0,1] and the strong regular implication, respectively. A∗ and A
′∗ are the triple (α-

triple) I solutions of the forms FMT(A,B,B∗) and FMT(A,B,B
′∗), respectively.
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Then we have

dR(A∗, A
′∗) ≤ m−

m∑
j=1

ρR(B∗(yj), B
′∗(yj)).

5. Conclusions

In this paper, we analyzed some shortages of previous fuzzy metric and presented
a novel weighted logic metric for measuring distance between two fuzzy sets, which
was defined by means of weighted average of all local measurements. In addition,
we investigated the robustness of triple I method by using the weighted logic metric
and proved that the triple I method possesses a good behavior of robustness under
the weighted logic metric. In future, we will investigate the robustness of other
fuzzy reasoning methods based on the weighted logic metric.
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