تعداد نشریات | 27 |
تعداد شمارهها | 612 |
تعداد مقالات | 6,232 |
تعداد مشاهده مقاله | 9,356,180 |
تعداد دریافت فایل اصل مقاله | 6,107,335 |
FUZZY BASED FAULT DETECTION AND CONTROL FOR 6/4 SWITCHED RELUCTANCE MOTOR | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 4، شماره 1، تیر 2007، صفحه 37-51 اصل مقاله (319.71 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2007.356 | ||
نویسندگان | ||
N. SELVAGANESAN* 1؛ D. RAJA1؛ S. SRINIVASAN2 | ||
1DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING, PONDICHERRY ENGINEERING COLLEGE, PONDICHERRY-605014, INDIA | ||
2DEPARTMENT OF INSTRUMENTATION ENGINEERING, MIT CAMPUS, ANNA UNIVERSITY, CHROMEPET, CHENNAI-600044, INDIA | ||
چکیده | ||
Prompt detection and diagnosis of faults in industrial systems are essential to minimize the production losses, increase the safety of the operator and the equipment. Several techniques are available in the literature to achieve these objectives. This paper presents fuzzy based control and fault detection for a 6/4 switched reluctance motor. The fuzzy logic control performs like a classical proportional plus integral control, giving the current reference variation based on speed error and its change. Also, the fuzzy inference system is created and rule base are evaluated relating the parameters to the type of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed. The feasibility of fuzzy based fault diagnosis and control scheme is demonstrated by applying it to a simulated system. | ||
کلیدواژهها | ||
Fault Diagnosis؛ Fuzzy logic؛ Switched Reluctance Motor؛ Fuzzy Inference Systems | ||
مراجع | ||
[1] A. A. Arkadan and B. W. Kielgas, Switched reluctance motor drive systems dynamic performance prediction under internal and external fault conditions, IEEE Trans. on Energy Conversion, 9 (1994), 45-52. [2] I. Husain and M. N. Anwa, Fault analysis of switched reluctance motor drives, IEEE Conference, (1999), 41-43. [3] C. C. Lee, Fuzzy logic control systems: fuzzy logic controller–Part I, IEEE Transaction on systems, man and Cybernetics, 20, 404-418. [4] J. M. Mendel, Fuzzy logic systems for engineering: tutorial, Proceedings of IEEE, 83 (1995). [5] T. J. E. Miller, Switched reluctance motors and their control, Hillsboro, OH: Magna Physics, (1993). [6] S. Mir, M. E. Elbuluk and I. Husain, Torque-ripple minimization in switched reluctance motor, IEEE Transactions on Industry Applications, 35 (1999). [7] S. Mir, I. Husain and M. E. Elbuluk, Switched reluctance motor modeling with on-line parameter identification, IEEE Transactions on Industry Applications, 34 (1998). [8] R. Muthu and E. El Kanzi, Fuzzy logic control of A pH neutralization process, IEEE - ICECS-(2003), 1066-1069. [9] A.V. Radun, Design Considerations for the switched reluctance motor, IEEE Trans. on Industry Applications, 31 (1995), 1079-1087. [10] M. G. Rodrigues, W. I. Suemitsu, P. Branco, J. A. Dente and L. G. B. Rolim, Fuzzy logic control of a switched reluctance motor, Coppe/UFRJ-Federal University of Rio de Janerio. [11] K. Russa, I. Husain and M. E. Elbuluk, A Self-tuning controller for switched reluctance motors, IEEE Transactions on Power Electronics, 15 (2000). [12] F. Soares and P. J. Costa Branco, Simulation of a 6/4 switched reluctance motor based on matlab/simulink environment, IEEE Transactions on Aero Space and Electronic Systems, 37 (2001). [13] C. M. Stephens, Fault detectionand managementSystem for fault tolerant switched reluctance motor, IEEE-Industry Applications Society Conf. Rec., (1989), 574-578. | ||
آمار تعداد مشاهده مقاله: 2,287 تعداد دریافت فایل اصل مقاله: 1,365 |