تعداد نشریات | 27 |
تعداد شمارهها | 566 |
تعداد مقالات | 5,822 |
تعداد مشاهده مقاله | 8,157,468 |
تعداد دریافت فایل اصل مقاله | 5,457,391 |
SOME RESULTS ON INTUITIONISTIC FUZZY SPACES | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 5، دوره 4، شماره 1، تیر 2007، صفحه 53-64 اصل مقاله (240.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2007.357 | ||
نویسندگان | ||
S. B. Hosseini1؛ Donal O’Regan2؛ Reza Saadati ![]() | ||
1Islamic Azad University-Nour Branch, Nour, Iran | ||
2Department of Mathematics, National University of Ireland, Galway, Ireland | ||
3Department of Mathematics, Islamic Azad University-Ayatollah Amoly Branch, Amol, Iran and Institute for Studies in Applied Mathematics 1, Fajr 4, Amol 46176-54553, Iran | ||
چکیده | ||
In this paper we define intuitionistic fuzzy metric and normed spaces. We first consider finite dimensional intuitionistic fuzzy normed spaces and prove several theorems about completeness, compactness and weak convergence in these spaces. In section 3 we define the intuitionistic fuzzy quotient norm and study completeness and review some fundamental theorems. Finally, we consider some properties of approximation theory in intuitionistic fuzzy metric spaces. | ||
کلیدواژهها | ||
Intuitionistic fuzzy metric (normed) spaces؛ completeness؛ Compactness؛ Finite dimensional؛ Weak convergence؛ Quotient spaces؛ Approximation theory | ||
مراجع | ||
[1] M. Amini and R. Saadati, Topics in fuzzy metric space, Journal of Fuzzy Math., 4 (2003), 765-768. [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96. [3] C. Cornelis, G. Deschrijver and E. E. Kerre, Classification of intuitionistic fuzzy implicators: an algebraic approach, In H. J. Caulfield, S. Chen, H. Chen, R. Duro, V. Honaver, E. E. Kerre, M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang and Y. Yang, editors, Proceedings of the 6th Joint Conference on Information Sciences, (2002), 105-108. [4] C. Cornelis, G. Deschrijver and E. E. Kerre, Intuitionistic fuzzy connectives revisited, Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, (2002), 1839-1844. [5] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy tnorms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45–61. [6] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227-235. [7] M. S. Elnaschie, On the uncertainty of Cantorian geometry and two-slit expriment, Chaos, Soliton and Fractals, 9 (1998), 517–529. [8] M. S. Elnaschie, On a fuzzy Kahler-like manifold which is consistent with two-slit expriment, Int. Journal of Nonlinear Science and Numerical Simulation, 6 (2005), 95–98. [9] M. S. Elnaschie, A review of E infinity theory and the mass spectrum of high energy particle physics, Chaos, Soliton and Fractals, 19 (2004), 209–236. [10] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and System, 64 (1994), 395–399. [11] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365–368. [12] S. B. Hosseini , J. H. Park and R. Saadati , Intuitionistic fuzzy invariant metric spaces, Int. Journal of Pure Appl. Math. Sci., 2(2005). [13] C. M. Hu , C-structure of FTS. V. fuzzy metric spaces, Journal of Fuzzy Math., 3(1995) 711–721. [14] P. C. Kainen , Replacing points by compacta in neural network approximation, Journal of Franklin Inst., 341 (2004), 391–399. [15] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, New York, 1978. [16] R. Lowen, Fuzzy set theory, Kluwer Academic Publishers, Dordrecht, 1996. [17] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004) 1039- 1046. [18] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, Journal of Appl. Math. Comput., 17 (2005), 475–484. [19] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331–344. [20] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Math., 10 (1960), 314–334. [21] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, chaos, soliton and fractals, 24 (2005), 407–422. [22] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338–353. | ||
آمار تعداد مشاهده مقاله: 2,409 تعداد دریافت فایل اصل مقاله: 1,943 |