تعداد نشریات | 27 |
تعداد شمارهها | 557 |
تعداد مقالات | 5,770 |
تعداد مشاهده مقاله | 8,025,676 |
تعداد دریافت فایل اصل مقاله | 5,394,448 |
QUANTALE-VALUED SUP-ALGEBRAS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 5، دوره 15، شماره 2، خرداد و تیر 2018، صفحه 53-73 اصل مقاله (365.2 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.3759 | ||
نویسنده | ||
Radek Slesinger* | ||
Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic | ||
چکیده | ||
Based on the notion of $Q$-sup-lattices (a fuzzy counterpart of complete join-semilattices valuated in a commutative quantale), we present the concept of $Q$-sup-algebras -- $Q$-sup-lattices endowed with a collection of finitary operations compatible with the fuzzy joins. Similarly to the crisp case investigated in \cite{zhang-laan}, we characterize their subalgebras and quotients, and following \cite{solovyov-qa}, we show that the category of $Q$-sup-algebras is isomorphic to a certain subcategory of a category of $Q$-modules. | ||
کلیدواژهها | ||
$Q$-order؛ $Q$-sup-lattice؛ $Q$-ordered algebra؛ $Q$-sup-algebra؛ Quotient؛ subalgebra | ||
مراجع | ||
[1] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles, volume 20 of IFSR International Series on Systems Science and Engineering, Springer US, New York, 2002. [2] R. Belohlavek and V. Vychodil, Fuzzy Equational Logic, volume 186 of Studies in Fuzziness and Soft Computing, Springer-Verlag Berlin Heidelberg, 2005. [3] F. Borceux, Handbook of Categorical Algebra: Volume 1, Basic Category Theory, Encyclo- pedia of Mathematics and its Applications, Cambridge University Press, 2008. [4] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, New York, 2012. [5] L. Fan, A new approach to quantitative domain theory, Electronic Notes in Theoretical Com- puter Science, 45 (2001), 77{87. [6] A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, American Mathematical Society, Providence, Rhodes Island, USA, 1984. [7] D. Kruml and J. Paseka, Algebraic and categorical aspects of quantales, In Handbook of Algebra, North-Holland, 5 (2008), 323{362. [8] J. Lu, K. Wang and B. Zhao, K- flat projective fuzzy quantales, Iranian Journal of Fuzzy Systems, 14(5) (2017), 65-81. [9] J. Paseka, Quantale Modules, Habilitation thesis, Masaryk University, 1999. [10] J. Paseka, A note on nuclei of quantale modules, Cahiers de Topologie et Geometrie Differentielle Categoriques, 43 (2002), 19{34. [11] J. Paseka. Projective sup-algebras: a general view, Topology and its Applications, 155(4) (2008), 308{317. [12] P. Resende, Tropological Systems and Observational Logic in Concurrency and Specification, PhD thesis, IST, Universidade Tecnica de Lisboa, 1998. [13] S. E. Rodabough, Powerset operator foundations for poslat fuzzy set theories and topologies, In Mathematics of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, Springer, 3 (1999), 91{116. [14] K. I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics, Longman Scientific & Technical, New York, 1990. [15] C. Russo, Quantale modules, with applications to logic and image processing, Available from http://arxiv.org/abs/0909.4493. [16] R. Slesinger, On some basic constructions in categories of quantale-valued sup-lattices, Math- ematics for Applications, 5(1) (2016), 39{53. [17] R. Slesinger, Triads in Ordered Sets, PhD thesis, Masaryk University, 2016. [18] S. A. Solovyov, A representation theorem for quantale algebras, In Proceedings of the Kla- genfurt Workshop 2007 on General Algebra, 18 (2008), 189{197. [19] S. A. Solovyov, A note on nuclei of quantale algebras, Bulletin of the Section of Logic, 40(1/2) (2011), 91{112. [20] S. A. Solovyov, Quantale algebras as a generalization of lattice-valued frames, Hacettepe Journal of Mathematics and Statistic, 45(3) (2016), 781{809. [21] I. Stubbe, Categorical structures enriched in a quantaloid: tensored and cotensored cate- gories, Theory and Applications of Categories, 16 (2006), 286{306. [22] K. Wang, Some researches on fuzzy domains and fuzzy quantales, PhD thesis, Shaanxi Nor- mal University, 2012, In Chinese. [23] K. Wang and B. Zhao, Some properties of the category of fuzzy quantales, Journal of Shaanxi Normal University (Natural Science Edition), In Chinese, 41(3) (2013), 1{6. [24] W. Yao, Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets, Fuzzy Sets and Systems, 161(7) (2010), 973{987. [25] W. Yao and L. X. Lu, Fuzzy Galois connections on fuzzy posets, Mathematical Logic Quar- terly, 55(1) (2009), 105{112. [26] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338{353. [27] L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3 (1971), 177{ 200. [28] Q. Zhang, W. Xie, and L. Fan, Fuzzy complete lattices, Fuzzy Sets and Systems, 160 (2009), 2275{2291. [29] Q. Y. Zhang and L. Fan, Continuity in quantitative domains, Fuzzy Sets and Systems, 154 (2005), 118{131. [30] X. Zhang and V. Laan, Quotients and subalgebras of sup-algebras, Proceedings of the Estonian Academy of Sciences, 64(3) (2015), 311{322. [31] X. Zhang and V. Laan, Injective hulls for ordered algebras, Algebra universalis, 76(3) (2016), 339{349. [32] X. Zhang and Y. Zhou, On nuclei of sup--algebras, Bulletin of the Iranian Mathematical Society, 43(6) (2017), 1709-1721. [33] B. Zhao, S.Wu, and K.Wang, Quantale algebras as lattice-valued quantales, Soft Computing, 21(10) (2017), 2561{2574. | ||
آمار تعداد مشاهده مقاله: 1,051 تعداد دریافت فایل اصل مقاله: 342 |